[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

Overview

template-pose

Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper (accepted to CVPR 2022)

Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann and Vincent Lepetit

Check out our paper and webpage for details!

figures/method.png

If our project is helpful for your research, please consider citing :

@inproceedings{nguyen2022template,
    title={Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions},
    author={Nguyen, Van Nguyen and Hu, Yinlin and Xiao, Yang and Salzmann, Mathieu and Lepetit, Vincent},
    booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}}

Table of Content

Methodology 🧑‍🎓

We introduce template-pose, which estimates 3D pose of new objects (can be very different from the training ones, i.e LINEMOD dataset) with only their 3D models. Our method requires neither a training phase on these objects nor images depicting them.

Two settings are considered in this work:

Dataset Predict ID object In-plane rotation
(Occlusion-)LINEMOD Yes No
T-LESS No Yes

Installation 👨‍🔧

We recommend creating a new Anaconda environment to use template-pose. Use the following commands to setup a new environment:

conda env create -f environment.yml
conda activate template

Optional: Installation of BlenderProc is required to render synthetic images. It can be ignored if you use our provided template. More details can be found in Datasets.

Datasets 😺 🔌

Before downloading the datasets, you may change this line to define the $ROOT folder (to store data and results).

There are two options:

  1. To download our pre-processed datasets (15GB) + SUN397 dataset (37GB)
./data/download_preprocessed_data.sh

Optional: You can download with following gdrive links and unzip them manually. We recommend keeping $DATA folder structure as detailed in ./data/README to keep pipeline simple:

  1. To download the original datasets and process them from scratch (process GT poses, render templates, compute nearest neighbors). All the main steps are detailed in ./data/README.
./data/download_and_process_from_scratch.sh

For any training with backbone ResNet50, we initialise with pretrained features of MOCOv2 which can be downloaded with the following command:

python -m lib.download_weight --model_name MoCov2

T-LESS 🔌

1. To launch a training on T-LESS:

python train_tless.py --config_path ./config_run/TLESS.json

2. To reproduce the results on T-LESS:

To download pretrained weights (by default, they are saved at $ROOT/pretrained/TLESS.pth):

python -m lib.download_weight --model_name TLESS

Optional: You can download manually with this link

To evaluate model with the pretrained weight:

python test_tless.py --config_path ./config_run/TLESS.json --checkpoint $ROOT/pretrained/TLESS.pth

LINEMOD and Occlusion-LINEMOD 😺

1. To launch a training on LINEMOD:

python train_linemod.py --config_path config_run/LM_$backbone_$split_name.json

For example, with “base" backbone and split #1:

python train_linemod.py --config_path config_run/LM_baseNetwork_split1.json

2. To reproduce the results on LINEMOD:

To download pretrained weights (by default, they are saved at $ROOT/pretrained):

python -m lib.download_weight --model_name LM_$backbone_$split_name

Optional: You can download manually with this link

To evaluate model with a checkpoint_path:

python test_linemod.py --config_path config_run/LM_$backbone_$split_name.json --checkpoint checkpoint_path

For example, with “base" backbone and split #1:

python -m lib.download_weight --model_name LM_baseNetwork_split1
python test_linemod.py --config_path config_run/LM_baseNetwork_split1.json --checkpoint $ROOT/pretrained/LM_baseNetwork_split1.pth

Acknowledgement

The code is adapted from PoseContrast, DTI-Clustering, CosyPose and BOP Toolkit. Many thanks to them!

The authors thank Martin Sundermeyer, Paul Wohlhart and Shreyas Hampali for their fast reply, feedback!

Contact

If you have any question, feel free to create an issue or contact the first author at [email protected]

Owner
Van Nguyen Nguyen
PhD student at Imagine-ENPC, France
Van Nguyen Nguyen
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022