Apply our monocular depth boosting to your own network!

Overview

MergeNet - Boost Your Own Depth

Boost custom or edited monocular depth maps using MergeNet

Input Original result After manual editing of base
patchselection patchselection patchselection

You can find our Google Colaboratory notebook here. Open In Colab

In this repository, we present a stand-alone implementation of our merging operator we use in our recent work:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Video, Main pdf, Supplementary pdf, Project Page. Github repo.

If you are an artist:

Although we are presenting few simple examples here, both low-resolution and high-resolution depth maps can be freely edited using any program before merging with our method.

Feel free to experiment and share your results with us!

If you are a researcher developing a new (CNN-based) Monocular Depth Estimation method:

This repository is a full implementation of our double-estimation framework. Double estimation uses a base-resolution result and a high-resolution result. The optimum high-resolution for a given image, R20 resolution, depends on the receptive field size of your network (the training resolution is a good approximation) and the image content. The code for R20 computation is also provided here.

To demonstrate the high-resolution performance of your network, you can simply generate the base and high-res estimates on any dataset and use this repository to apply our double estimation method to your own work.

Our Github repo for the main project also includes the implementation of our detail-focused monocular depth performance metric D^3R.

Mix'n'match depths from different networks or use your own custom-edited ones.

In the image below, we show that choosing a different base estimate can improve the depth for the city:

Input Base and details from [MiDaS][1] Base from [LeRes][2] and details from [MiDaS][1]
patchselection patchselection patchselection

To get the optimal result for a given scene, you may want to try multiple methods in both low- and high-resolutions and pick your favourite for each case.

Input Base from [MiDaS v3 / DPT][3] Base from [MiDaS v3 / DPT][3] and details from [MiDaS v2][1]
patchselection patchselection patchselection

Moreover, you can simply edit the base image before merging using any image editing tool for more creative control:

Input Base and details from [MiDaS][1] With edited base from [MiDaS][1]
patchselection patchselection patchselection

How does it work?

merge

This repository lets you combine two input depth maps with certain characteristics.

Low-res base depth

The network uses the base estimate as the main structure of the scene. Typically this is the default-resolution result of a monocular depth estimation network at around 300x300 resolution.

This base estimate is a good candidate for editing due to its low-resolution nature.

Monocular depth estimation methods with geometric consistency optimizations can be used as the base estimation to merge details onto a consistent base.

High-res depth with details

The merging operation transfers the details from this high-resolution depth map onto the structure provided by the low-resolution base pair.

The high-resolution input does not need structural consistency and is typically generated by feeding the input image at a much higher resolution than the training resolution of a given monocular depth estimation network.

You can compute the optimal high-resolution estimation size for a given image using our R20 resolution calculator, also provided in this repository. You can also simply use 2x or 3x resolution to simply add more details.

For more information on this project:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Main pdf, Supplementary pdf, Project Page. Github repo.

video

Citation

This implementation is provided for academic use only. Please cite our paper if you use this code or any of the models.

@INPROCEEDINGS{Miangoleh2021Boosting,
author={S. Mahdi H. Miangoleh and Sebastian Dille and Long Mai and Sylvain Paris and Ya\u{g}{\i}z Aksoy},
title={Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging},
journal={Proc. CVPR},
year={2021},
}

Credits

The "Merge model" code skeleton (./pix2pix folder) was adapted from the [pytorch-CycleGAN-and-pix2pix][4] repository.
[1]: https://github.com/intel-isl/MiDaS/tree/v2
[2]: https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
[3]: https://github.com/isl-org/DPT
[4]: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix \

Owner
Computational Photography Lab @ SFU
Computational Photography Lab at Simon Fraser University, lead by @yaksoy
Computational Photography Lab @ SFU
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022