~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.

Overview

cosc428-structor

I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Conventional OCR engines like Tesseract weren't able to accurately recognise the page structure, which led to many transcription errors. If I could tell Tesseract to ignore certain regions (like images or repeated headers), then I could greatly reduce the number of errors in the resulting ebook. Thus: for my assignment, I wrote a program that takes an image and uses computer vision magick to determine the page's structure. So far, my program can detect and locate:

  • lines of text,
  • paragraphs,
  • section titles,
  • images and their associated captions,
  • boilerplate like page numbers, and
  • chapter titles.

Ain't it grand?

Dependencies

The project is written in Python 2.7.3 and uses the cv2 library for interacting with openCV. It also uses numpy for some of the mathematical operations. On windows, the best way to get these dependencies is to install the Python(x,y) suite (https://code.google.com/p/pythonxy/), which combines python with a customisable set of scientific computing libraries.

Program Structure

The program's root is main.py, but this simply iterates through images in a folder and constructs a Page instance from each image. Thus, the real work happens in page.py.

page.py contains a few utility methods and the Page class. The constructor calls the appropriate methods in order to determine the logical structure of the page. This structure is stored in three objects: self.margin, self.content, and self.boilerplate (which contains such non-content text objects as the page number and header).

The getBuildingBlocks method is responsible for finding words, grouping words into textual lines, discarding marginal noise, and fitting a Margin instance around the remaining lines. Most of these tasks are preformed by calling other functions.

The self.content object is found by passing the set of lines to the Content() constructor. This uses a state machine to group lines into figures, paragraphs, section titles, etc. The Content class, along with a class for each content type, is found in content.py.

The other files can generally be ignored when trying to understand the program; they are largely just convenience classes which represent page elements (such as points, geometric lines, words, text lines, and boxes), as well as supporting tools such as the Stopwatch.

How to Run the Code

Run main.py using the python interpreter. This will process each page in ./images, and for each page a series of 'snapshot' images will be displayed in order to illustrate the algorithm. To show only the final result for each image, set showSteps in main.py to False.

You might also like...
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Some bits of javascript to transcribe scanned pages using PageXML

nashi (nasḫī) Some bits of javascript to transcribe scanned pages using PageXML. Both ltr and rtl languages are supported. Try it! But wait, there's m

scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Deep learning based page layout analysis
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

ocroseg - This is a deep learning model for page layout analysis / segmentation.
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

a deep learning model for page layout analysis / segmentation.
a deep learning model for page layout analysis / segmentation.

OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-

OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Comments
  • The getBuildingBlocks

    The getBuildingBlocks

    Hello, Recently, I have some task about the document layout analysis. The description in "README.md" is very consistent with my mission. But when I try to run the code as README.md: How to Run the Code, there just some red line in each dobule word and have no resault of the detect and locate of "line of text", "paragraphs", "section titles" , etc. So I want to know what has happend to the code. Very thankful

    opened by lvbohui 3
Releases(v1.0)
Owner
Chad Oliver
Chad Oliver
🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.

Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti

TAHRI Ahmed R. 332 Dec 31, 2022
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Simple SDF mesh generation in Python

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Michael Fogleman 1.1k Jan 08, 2023
Ackermann Line Follower Robot Simulation.

Ackermann Line Follower Robot This is a simulation of a line follower robot that works with steering control based on Stanley: The Robot That Won the

Lucas Mazzetto 2 Apr 16, 2022
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022
Détection de créneaux de vaccination disponibles pour l'outil ViteMaDose

Vite Ma Dose ! est un outil open source de CovidTracker permettant de détecter les rendez-vous disponibles dans votre département afin de vous faire v

CovidTracker 239 Dec 13, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
The code for “Oriented RepPoints for Aerail Object Detection”

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints”, Under review. (arXiv preprint) Introduction Or

WentongLi 207 Dec 24, 2022
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Shaohui Ruan 3.3k Dec 30, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022