Technical Analysis Library using Pandas and Numpy

Overview

CircleCI Documentation Status Coverage Status Code style: black Linter: Prospector PyPI PyPI - Downloads Donate PayPal

Technical Analysis Library in Python

It is a Technical Analysis library useful to do feature engineering from financial time series datasets (Open, Close, High, Low, Volume). It is built on Pandas and Numpy.

Bollinger Bands graph example

The library has implemented 42 indicators:

Volume

  • Money Flow Index (MFI)
  • Accumulation/Distribution Index (ADI)
  • On-Balance Volume (OBV)
  • Chaikin Money Flow (CMF)
  • Force Index (FI)
  • Ease of Movement (EoM, EMV)
  • Volume-price Trend (VPT)
  • Negative Volume Index (NVI)
  • Volume Weighted Average Price (VWAP)

Volatility

  • Average True Range (ATR)
  • Bollinger Bands (BB)
  • Keltner Channel (KC)
  • Donchian Channel (DC)
  • Ulcer Index (UI)

Trend

  • Simple Moving Average (SMA)
  • Exponential Moving Average (EMA)
  • Weighted Moving Average (WMA)
  • Moving Average Convergence Divergence (MACD)
  • Average Directional Movement Index (ADX)
  • Vortex Indicator (VI)
  • Trix (TRIX)
  • Mass Index (MI)
  • Commodity Channel Index (CCI)
  • Detrended Price Oscillator (DPO)
  • KST Oscillator (KST)
  • Ichimoku Kinkō Hyō (Ichimoku)
  • Parabolic Stop And Reverse (Parabolic SAR)
  • Schaff Trend Cycle (STC)

Momentum

  • Relative Strength Index (RSI)
  • Stochastic RSI (SRSI)
  • True strength index (TSI)
  • Ultimate Oscillator (UO)
  • Stochastic Oscillator (SR)
  • Williams %R (WR)
  • Awesome Oscillator (AO)
  • Kaufman's Adaptive Moving Average (KAMA)
  • Rate of Change (ROC)
  • Percentage Price Oscillator (PPO)
  • Percentage Volume Oscillator (PVO)

Others

  • Daily Return (DR)
  • Daily Log Return (DLR)
  • Cumulative Return (CR)

Documentation

https://technical-analysis-library-in-python.readthedocs.io/en/latest/

Motivation to use

How to use (Python 3)

$ pip install --upgrade ta

To use this library you should have a financial time series dataset including Timestamp, Open, High, Low, Close and Volume columns.

You should clean or fill NaN values in your dataset before add technical analysis features.

You can get code examples in examples_to_use folder.

You can visualize the features in this notebook.

Example adding all features

import pandas as pd
from ta import add_all_ta_features
from ta.utils import dropna


# Load datas
df = pd.read_csv('ta/tests/data/datas.csv', sep=',')

# Clean NaN values
df = dropna(df)

# Add all ta features
df = add_all_ta_features(
    df, open="Open", high="High", low="Low", close="Close", volume="Volume_BTC")

Example adding particular feature

import pandas as pd
from ta.utils import dropna
from ta.volatility import BollingerBands


# Load datas
df = pd.read_csv('ta/tests/data/datas.csv', sep=',')

# Clean NaN values
df = dropna(df)

# Initialize Bollinger Bands Indicator
indicator_bb = BollingerBands(close=df["Close"], window=20, window_dev=2)

# Add Bollinger Bands features
df['bb_bbm'] = indicator_bb.bollinger_mavg()
df['bb_bbh'] = indicator_bb.bollinger_hband()
df['bb_bbl'] = indicator_bb.bollinger_lband()

# Add Bollinger Band high indicator
df['bb_bbhi'] = indicator_bb.bollinger_hband_indicator()

# Add Bollinger Band low indicator
df['bb_bbli'] = indicator_bb.bollinger_lband_indicator()

# Add Width Size Bollinger Bands
df['bb_bbw'] = indicator_bb.bollinger_wband()

# Add Percentage Bollinger Bands
df['bb_bbp'] = indicator_bb.bollinger_pband()

Deploy and develop (for developers)

$ git clone https://github.com/bukosabino/ta.git
$ cd ta
$ pip install -r requirements-play.txt
$ make test

Sponsor

Logo OpenSistemas

Thank you to OpenSistemas! It is because of your contribution that I am able to continue the development of this open source library.

Based on

In Progress

  • Automated tests for all the indicators.

TODO

Changelog

Check the changelog of project.

Donation

If you think ta library help you, please consider buying me a coffee.

Credits

Developed by Darío López Padial (aka Bukosabino) and other contributors.

Please, let me know about any comment or feedback.

Also, I am a software engineer freelance focused on Data Science using Python tools such as Pandas, Scikit-Learn, Backtrader, Zipline or Catalyst. Don't hesitate to contact me if you need to develop something related with this library, Python, Technical Analysis, AlgoTrading, Machine Learning, etc.

Owner
Darío López Padial
Join us now and share the software. You'll be free.
Darío López Padial
Fourth and final milestone project

Milestone Project 4: Pound Dog Click link to visit "Pound Dog" Aim of the project The aim of this project is to provide access to a website informing

Jamie Wilson 1 Oct 31, 2021
High-performance TensorFlow library for quantitative finance.

TF Quant Finance: TensorFlow based Quant Finance Library Table of contents Introduction Installation TensorFlow training Development roadmap Examples

Google 3.5k Jan 01, 2023
Python Backtesting library for trading strategies

backtrader Yahoo API Note: [2018-11-16] After some testing it would seem that data downloads can be again relied upon over the web interface (or API v

DRo 9.8k Dec 30, 2022
rotki is an open source portfolio tracking, analytics, accounting and tax reporting tool that respects your privacy.

rotki is an open source portfolio tracking, analytics, accounting and tax reporting tool that respects your privacy. The mission of rotki is to bring transparency into the crypto and financial sector

Rotki 2k Dec 30, 2022
ffn - a financial function library for Python

ffn - Financial Functions for Python Alpha release - please let me know if you find any bugs! If you are looking for a full backtesting framework, ple

Philippe Morissette 1.4k Jan 01, 2023
This repository contains a set of plugins for Volatility 3

volatility_plugins This repository contains a set of plugins for Volatility 3 These plugins are not compatible with Volatility 2 To use these plugins

Immersive-Labs-Sec 10 Nov 30, 2022
crypto utilities as a way of learning

cryptos Just me developing a pure Python from-scratch zero-dependency implementation of Bitcoin for educational purposes. This includes a lot of the c

Andrej 958 Jan 02, 2023
Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.

Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.

Santosh 54 Dec 10, 2022
:mag_right: :chart_with_upwards_trend: :snake: :moneybag: Backtest trading strategies in Python.

Backtesting.py Backtest trading strategies with Python. Project website Documentation the project if you use it. Installation $ pip install backtestin

3.1k Dec 31, 2022
Q-Fin: A Python library for mathematical finance.

Q-Fin A Python library for mathematical finance. Installation https://pypi.org/project/QFin/ pip install qfin Bond Pricing Option Pricing Black-Schol

Roman Paolucci 247 Jan 01, 2023
ARCH models in Python

arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used

Kevin Sheppard 1k Jan 04, 2023
Github.com/CryptoSignal - #1 Quant Trading & Technical Analysis Bot - 2,100 + stars, 580 + forks

CryptoSignal - #1 Quant Trading & Technical Analysis Bot - 2,100 + stars, 580 + forks https://github.com/CryptoSignal/Crypto-Signal Development state:

Github.com/Signal - 2,100 + stars, 580 + forks 4.2k Jan 01, 2023
'Personal Finance' is a project where people can manage and track their expenses

Personal Finance by Abhiram Rishi Pratitpati 'Personal Finance' is a project where people can manage and track their expenses. It is hard to keep trac

Abhiram Rishi Prattipati 1 Dec 21, 2021
This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance

Python for Finance (O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Analyze Big Financial

Yves Hilpisch 1.6k Jan 03, 2023
personal finance tracker, written in python 3 and using the wxPython GUI toolkit.

personal finance tracker, written in python 3 and using the wxPython GUI toolkit.

wenbin wu 23 Oct 30, 2022
Software for quick purchase of mystery boxes on Binance.

english | русский язык Software for quick purchase of mystery boxes on Binance. Purpose Installation & setup Motivation Specification Disclaimer Purpo

Ellis 5 Mar 08, 2022
scrilla: A Financial Optimization Application

A python application that wraps around AlphaVantage, Quandl and IEX APIs, calculates financial statistics and optimizes portfolio allocations.

Grant Moore 6 Dec 17, 2022
An open source reinforcement learning framework for training, evaluating, and deploying robust trading agents.

TensorTrade: Trade Efficiently with Reinforcement Learning TensorTrade is still in Beta, meaning it should be used very cautiously if used in producti

4k Dec 30, 2022
A banking system is a group or network of institutions that provide financial services for us

A banking system is a group or network of institutions that provide financial services for us. These institutions are responsible for operating a payment system, providing loans, taking deposits, and

UTTKARSH PARMAR 1 Oct 24, 2021