Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Related tags

Deep Learningdfgo
Overview

Differentiable Factor Graph Optimization for Learning Smoothers

mypy

Figure describing the overall training pipeline proposed by our IROS paper. Contains five sections, arranged left to right: (1) system models, (2) factor graphs for state estimation, (3) MAP inference, (4) state estimates, and (5) errors with respect to ground-truth. Arrows show how gradients are backpropagated from right to left, starting directly from the final stage (error with respect to ground-truth) back to parameters of the system models.

Overview

Code release for our IROS 2021 conference paper:

Brent Yi1, Michelle A. Lee1, Alina Kloss2, Roberto Martín-Martín1, and Jeannette Bohg1. Differentiable Factor Graph Optimization for Learning Smoothers. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2021.

1Stanford University, {brentyi,michellelee,robertom,bohg}@cs.stanford.edu
2Max Planck Institute for Intelligent Systems, [email protected]


This repository contains models, training scripts, and experimental results, and can be used to either reproduce our results or as a reference for implementation details.

Significant chunks of the code written for this paper have been factored out of this repository and released as standalone libraries, which may be useful for building on our work. You can find each of them linked here:

  • jaxfg is our core factor graph optimization library.
  • jaxlie is our Lie theory library for working with rigid body transformations.
  • jax_dataclasses is our library for building JAX pytrees as dataclasses. It's similar to flax.struct, but has workflow improvements for static analysis and nested structures.
  • jax-ekf contains our EKF implementation.

Status

Included in this repo for the disk task:

  • Smoother training & results
    • Training: python train_disk_fg.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/disk/fg/**/
  • Filter baseline training & results
    • Training: python train_disk_ekf.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/disk/ekf/**/
  • LSTM baseline training & results
    • Training: python train_disk_lstm.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/disk/lstm/**/

And, for the visual odometry task:

  • Smoother training & results (including ablations)
    • Training: python train_kitti_fg.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/kitti/fg/**/
  • EKF baseline training & results
    • Training: python train_kitti_ekf.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/kitti/ekf/**/
  • LSTM baseline training & results
    • Training: python train_kitti_lstm.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/kitti/lstm/**/

Note that **/ indicates a recursive glob in zsh. This can be emulated in bash>4 via the globstar option (shopt -q globstar).

We've done our best to make our research code easy to parse, but it's still being iterated on! If you have questions, suggestions, or any general comments, please reach out or file an issue.

Setup

We use Python 3.8 and miniconda for development.

  1. Any calls to CHOLMOD (via scikit-sparse, sometimes used for eval but never for training itself) will require SuiteSparse:

    # Mac
    brew install suite-sparse
    
    # Debian
    sudo apt-get install -y libsuitesparse-dev
  2. Dependencies can be installed via pip:

    pip install -r requirements.txt

    In addition to JAX and the first-party dependencies listed above, note that this also includes various other helpers:

    • datargs (currently forked) is super useful for building type-safe argument parsers.
    • torch's Dataset and DataLoader interfaces are used for training.
    • fannypack contains some utilities for downloading datasets, working with PDB, polling repository commit hashes.

The requirements.txt provided will install the CPU version of JAX by default. For CUDA support, please see instructions from the JAX team.

Datasets

Datasets synced from Google Drive and loaded via h5py automatically as needed. If you're interested in downloading them manually, see lib/kitti/data_loading.py and lib/disk/data_loading.py.

Training

The naming convention for training scripts is as follows: train_{task}_{model type}.py.

All of the training scripts provide a command-line interface for configuring experiment details and hyperparameters. The --help flag will summarize these settings and their default values. For example, to run the training script for factor graphs on the disk task, try:

> python train_disk_fg.py --help

Factor graph training script for disk task.

optional arguments:
  -h, --help            show this help message and exit
  --experiment-identifier EXPERIMENT_IDENTIFIER
                        (default: disk/fg/default_experiment/fold_{dataset_fold})
  --random-seed RANDOM_SEED
                        (default: 94305)
  --dataset-fold {0,1,2,3,4,5,6,7,8,9}
                        (default: 0)
  --batch-size BATCH_SIZE
                        (default: 32)
  --train-sequence-length TRAIN_SEQUENCE_LENGTH
                        (default: 20)
  --num-epochs NUM_EPOCHS
                        (default: 30)
  --learning-rate LEARNING_RATE
                        (default: 0.0001)
  --warmup-steps WARMUP_STEPS
                        (default: 50)
  --max-gradient-norm MAX_GRADIENT_NORM
                        (default: 10.0)
  --noise-model {CONSTANT,HETEROSCEDASTIC}
                        (default: CONSTANT)
  --loss {JOINT_NLL,SURROGATE_LOSS}
                        (default: SURROGATE_LOSS)
  --pretrained-virtual-sensor-identifier PRETRAINED_VIRTUAL_SENSOR_IDENTIFIER
                        (default: disk/pretrain_virtual_sensor/fold_{dataset_fold})

When run, train scripts serialize experiment configurations to an experiment_config.yaml file. You can find hyperparameters in the experiments/ directory for all results presented in our paper.

Evaluation

All evaluation metrics are recorded at train time. The cross_validate.py script can be used to compute metrics across folds:

# Summarize all experiments with means and standard errors of recorded metrics.
python cross_validate.py

# Include statistics for every fold -- this is much more data!
python cross_validate.py --disaggregate

# We can also glob for a partial set of experiments; for example, all of the
# disk experiments.
# Note that the ** wildcard may fail in bash; see above for a fix.
python cross_validate.py --experiment-paths ./experiments/disk/**/

Acknowledgements

We'd like to thank Rika Antonova, Kevin Zakka, Nick Heppert, Angelina Wang, and Philipp Wu for discussions and feedback on both our paper and codebase. Our software design also benefits from ideas from several open-source projects, including Sophus, GTSAM, Ceres Solver, minisam, and SwiftFusion.

This work is partially supported by the Toyota Research Institute (TRI) and Google. This article solely reflects the opinions and conclusions of its authors and not TRI, Google, or any entity associated with TRI or Google.

Owner
Brent Yi
Brent Yi
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022