Weakly Supervised Learning of Rigid 3D Scene Flow

Overview

Weakly Supervised Learning of Rigid 3D Scene Flow

This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D scene flow estimation. It represents the official implementation of the paper:

Weakly Supervised Learning of Rigid 3D Scene Flow

Zan Gojcic, Or Litany, Andreas Wieser, Leonidas J. Guibas, Tolga Birdal
| IGP ETH Zurich | Nvidia Toronto AI Lab | Guibas Lab Stanford University |

For more information, please see the project webpage

WSR3DSF

Environment Setup

Note: the code in this repo has been tested on Ubuntu 16.04/20.04 with Python 3.7, CUDA 10.1/10.2, PyTorch 1.7.1 and MinkowskiEngine 0.5.1. It may work for other setups, but has not been tested.

Before proceding, make sure CUDA is installed and set up correctly.

After cloning this reposiory you can proceed by setting up and activating a virual environment with Python 3.7. If you are using a different version of cuda (10.1) change the pytorch installation instruction accordingly.

export CXX=g++-7
conda config --append channels conda-forge
conda create --name rigid_3dsf python=3.7
source activate rigid_3dsf
conda install --file requirements.txt
conda install -c open3d-admin open3d=0.9.0.0
conda install -c intel scikit-learn
conda install pytorch==1.7.1 torchvision cudatoolkit=10.1 -c pytorch

You can then proceed and install MinkowskiEngine library for sparse tensors:

pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps

Our repository also includes a pytorch implementation of Chamfer Distance in ./utils/chamfer_distance which will be compiled on the first run.

In order to test if Pytorch and MinkwoskiEngine are installed correctly please run

python -c "import torch, MinkowskiEngine"

which should run without an error message.

Data

We provide the preprocessed data of flying_things_3d (108GB), stereo_kitti (500MB), lidar_kitti (~160MB), semantic_kitti (78GB), and waymo_open (50GB) used for training and evaluating our model.

To download a single dataset please run:

bash ./scripts/download_data.sh name_of_the_dataset

To download all datasets simply run:

bash ./scripts/download_data.sh

The data will be downloaded and extracted to ./data/name_of_the_dataset/.

Pretrained models

We provide the checkpoints of the models trained on flying_things_3d or semantic_kitti, which we use in our main evaluations.

To download these models please run:

bash ./scripts/download_pretrained_models.sh

Additionally, we provide all the models used in the ablation studies and the model fine tuned on waymo_open.

To download these models please run:

bash ./scripts/download_pretrained_models_ablations.sh

All the models will be downloaded and extracted to ./logs/dataset_used_for_training/.

Evaluation with pretrained models

Our method with pretrained weights can be evaluated using the ./eval.py script. The configuration parameters of the evaluation can be set with the *.yaml configuration files located in ./configs/eval/. We provide a configuration file for each dataset used in our paper. For all evaluations please first download the pretrained weights and the corresponding data. Note, if the data or pretrained models are saved to a non-default path the config files also has to be adapted accordingly.

FlyingThings3D

To evaluate our backbone + scene flow head on FlyingThings3d please run:

python eval.py ./configs/eval/eval_flying_things_3d.yaml

This should recreate the results from the Table 1 of our paper (EPE3D: 0.052 m).

stereoKITTI

To evaluate our backbone + scene flow head on stereoKITTI please run:

python eval.py ./configs/eval/eval_stereo_kitti.yaml

This should again recreate the results from the Table 1 of our paper (EPE3D: 0.042 m).

lidarKITTI

To evaluate our full weakly supervised method on lidarKITTI please run:

python eval.py ./configs/eval/eval_lidar_kitti.yaml

This should recreate the results for Ours++ on lidarKITTI (w/o ground) from the Table 2 of our paper (EPE3D: 0.094 m). To recreate other results on lidarKITTI please change the ./configs/eval/eval_lidar_kitti.yaml file accordingly.

semanticKITTI

To evaluate our full weakly supervised method on semanticKITTI please run:

python eval.py ./configs/eval/eval_semantic_kitti.yaml

This should recreate the results of our full model on semanticKITTI (w/o ground) from the Table 4 of our paper. To recreate other results on semanticKITTI please change the ./configs/eval/eval_semantic_kitti.yaml file accordingly.

waymo open

To evaluate our fine-tuned model on waymo open please run:

python eval.py ./configs/eval/eval_waymo_open.yaml

This should recreate the results for Ours++ (fine-tuned) from the Table 9 of the appendix. To recreate other results on waymo open please change the ./configs/eval/eval_waymo_open.yaml file accordingly.

Training our method from scratch

Our method can be trained using the ./train.py script. The configuration parameters of the training process can be set using the config files located in ./configs/train/.

Training our backbone with full supervision on FlyingThings3D

To train our backbone network and scene flow head under full supervision (corresponds to Sec. 4.3 of our paper) please run:

python train.py ./configs/train/train_fully_supervised.yaml

The checkpoints and tensorboard data will be saved to ./logs/logs_FlyingThings3D_ME. If you run out of GPU memory with the default setting please adapt the batch_size and acc_iter_size in the ./configs/default.yaml to e.g. 4 and 2, respectively.

Training under weak supervision on semanticKITTI

To train our full method under weak supervision on semanticKITTI please run

python train.py ./configs/train/train_weakly_supervised.yaml

The checkpoints and tensorboard data will be saved to ./logs/logs_SemanticKITTI_ME. If you run out of GPU memory with the default setting please adapt the batch_size and acc_iter_size in the ./configs/default.yaml to e.g. 4 and 2, respectively.

Citation

If you found this code or paper useful, please consider citing:

@misc{gojcic2021weakly3dsf,
        title = {Weakly {S}upervised {L}earning of {R}igid {3D} {S}cene {F}low}, 
        author = {Gojcic, Zan and Litany, Or and Wieser, Andreas and Guibas, Leonidas J and Birdal, Tolga},
        year = {2021},
        eprint={2102.08945},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
        }

Contact

If you run into any problems or have questions, please create an issue or contact Zan Gojcic.

Acknowledgments

In this project we use parts of the official implementations of:

We thank the respective authors for open sourcing their methods.

Owner
Zan Gojcic
Zan Gojcic
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022