Weakly Supervised Learning of Rigid 3D Scene Flow

Overview

Weakly Supervised Learning of Rigid 3D Scene Flow

This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D scene flow estimation. It represents the official implementation of the paper:

Weakly Supervised Learning of Rigid 3D Scene Flow

Zan Gojcic, Or Litany, Andreas Wieser, Leonidas J. Guibas, Tolga Birdal
| IGP ETH Zurich | Nvidia Toronto AI Lab | Guibas Lab Stanford University |

For more information, please see the project webpage

WSR3DSF

Environment Setup

Note: the code in this repo has been tested on Ubuntu 16.04/20.04 with Python 3.7, CUDA 10.1/10.2, PyTorch 1.7.1 and MinkowskiEngine 0.5.1. It may work for other setups, but has not been tested.

Before proceding, make sure CUDA is installed and set up correctly.

After cloning this reposiory you can proceed by setting up and activating a virual environment with Python 3.7. If you are using a different version of cuda (10.1) change the pytorch installation instruction accordingly.

export CXX=g++-7
conda config --append channels conda-forge
conda create --name rigid_3dsf python=3.7
source activate rigid_3dsf
conda install --file requirements.txt
conda install -c open3d-admin open3d=0.9.0.0
conda install -c intel scikit-learn
conda install pytorch==1.7.1 torchvision cudatoolkit=10.1 -c pytorch

You can then proceed and install MinkowskiEngine library for sparse tensors:

pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps

Our repository also includes a pytorch implementation of Chamfer Distance in ./utils/chamfer_distance which will be compiled on the first run.

In order to test if Pytorch and MinkwoskiEngine are installed correctly please run

python -c "import torch, MinkowskiEngine"

which should run without an error message.

Data

We provide the preprocessed data of flying_things_3d (108GB), stereo_kitti (500MB), lidar_kitti (~160MB), semantic_kitti (78GB), and waymo_open (50GB) used for training and evaluating our model.

To download a single dataset please run:

bash ./scripts/download_data.sh name_of_the_dataset

To download all datasets simply run:

bash ./scripts/download_data.sh

The data will be downloaded and extracted to ./data/name_of_the_dataset/.

Pretrained models

We provide the checkpoints of the models trained on flying_things_3d or semantic_kitti, which we use in our main evaluations.

To download these models please run:

bash ./scripts/download_pretrained_models.sh

Additionally, we provide all the models used in the ablation studies and the model fine tuned on waymo_open.

To download these models please run:

bash ./scripts/download_pretrained_models_ablations.sh

All the models will be downloaded and extracted to ./logs/dataset_used_for_training/.

Evaluation with pretrained models

Our method with pretrained weights can be evaluated using the ./eval.py script. The configuration parameters of the evaluation can be set with the *.yaml configuration files located in ./configs/eval/. We provide a configuration file for each dataset used in our paper. For all evaluations please first download the pretrained weights and the corresponding data. Note, if the data or pretrained models are saved to a non-default path the config files also has to be adapted accordingly.

FlyingThings3D

To evaluate our backbone + scene flow head on FlyingThings3d please run:

python eval.py ./configs/eval/eval_flying_things_3d.yaml

This should recreate the results from the Table 1 of our paper (EPE3D: 0.052 m).

stereoKITTI

To evaluate our backbone + scene flow head on stereoKITTI please run:

python eval.py ./configs/eval/eval_stereo_kitti.yaml

This should again recreate the results from the Table 1 of our paper (EPE3D: 0.042 m).

lidarKITTI

To evaluate our full weakly supervised method on lidarKITTI please run:

python eval.py ./configs/eval/eval_lidar_kitti.yaml

This should recreate the results for Ours++ on lidarKITTI (w/o ground) from the Table 2 of our paper (EPE3D: 0.094 m). To recreate other results on lidarKITTI please change the ./configs/eval/eval_lidar_kitti.yaml file accordingly.

semanticKITTI

To evaluate our full weakly supervised method on semanticKITTI please run:

python eval.py ./configs/eval/eval_semantic_kitti.yaml

This should recreate the results of our full model on semanticKITTI (w/o ground) from the Table 4 of our paper. To recreate other results on semanticKITTI please change the ./configs/eval/eval_semantic_kitti.yaml file accordingly.

waymo open

To evaluate our fine-tuned model on waymo open please run:

python eval.py ./configs/eval/eval_waymo_open.yaml

This should recreate the results for Ours++ (fine-tuned) from the Table 9 of the appendix. To recreate other results on waymo open please change the ./configs/eval/eval_waymo_open.yaml file accordingly.

Training our method from scratch

Our method can be trained using the ./train.py script. The configuration parameters of the training process can be set using the config files located in ./configs/train/.

Training our backbone with full supervision on FlyingThings3D

To train our backbone network and scene flow head under full supervision (corresponds to Sec. 4.3 of our paper) please run:

python train.py ./configs/train/train_fully_supervised.yaml

The checkpoints and tensorboard data will be saved to ./logs/logs_FlyingThings3D_ME. If you run out of GPU memory with the default setting please adapt the batch_size and acc_iter_size in the ./configs/default.yaml to e.g. 4 and 2, respectively.

Training under weak supervision on semanticKITTI

To train our full method under weak supervision on semanticKITTI please run

python train.py ./configs/train/train_weakly_supervised.yaml

The checkpoints and tensorboard data will be saved to ./logs/logs_SemanticKITTI_ME. If you run out of GPU memory with the default setting please adapt the batch_size and acc_iter_size in the ./configs/default.yaml to e.g. 4 and 2, respectively.

Citation

If you found this code or paper useful, please consider citing:

@misc{gojcic2021weakly3dsf,
        title = {Weakly {S}upervised {L}earning of {R}igid {3D} {S}cene {F}low}, 
        author = {Gojcic, Zan and Litany, Or and Wieser, Andreas and Guibas, Leonidas J and Birdal, Tolga},
        year = {2021},
        eprint={2102.08945},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
        }

Contact

If you run into any problems or have questions, please create an issue or contact Zan Gojcic.

Acknowledgments

In this project we use parts of the official implementations of:

We thank the respective authors for open sourcing their methods.

Owner
Zan Gojcic
Zan Gojcic
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022