Benchmark tools for Compressive LiDAR-to-map registration

Overview

Benchmark tools for Compressive LiDAR-to-map registration

This repo contains the released version of code and datasets used for our IROS 2021 paper: "Map Compressibility Assessment for LiDAR Registration [link]. If you find the code useful for your work, please cite:

@inproceedings{Chang21iros,
   author = {M.-F. Chang and W. Dong and J.G. Mangelson and M. Kaess and S. Lucey},
   title = {Map Compressibility Assessment for {LiDAR} Registration},
   booktitle = {Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots andSystems, IROS},
   address = {Prague, Czech Republic},
   month = sep,
   year = {2021}
}

Environment Setup

The released codebase supports following methods:

  1. Point-to-point ICP (from open3d)
  2. Point-to-plane ICP (from open3d)
  3. FPFH (with RANSAC from open3d or Teaser++)
  4. FCGF (with RANSAC from open3d or Teaser++)
  5. D3Feat (with RANSAC from open3d or Teaser++)

To run Teaser++, please also install from https://github.com/MIT-SPARK/TEASER-plusplus (python bindings required). One can build install the environment with the following conda command:

conda create --name=benchmark  python=3.6  numpy open3d=0.12  tqdm pytorch cpuonly -c pytorch -c open3d-admin -c conda-forge 
conda activate benchmark
pip install pillow==6.0 #for visualization

Datasets

The preprocessed data can be downloaded from [link]. The following data were provided:

  1. Preprocessed KITTI scan/local map pairs
  2. Preprocessed Argoverse Tracking scan/local map pairs
  3. FCGF and D3Feat features
  4. The ground truth poses

We haved preprocessed the results from FCGF and D3Feat into pickle files. The dataset is organized as source-target pairs. The source is the input LiDAR scan and the target is the cropped local map with initial LiDAR pose.

By default, we put the data in ./data folder. Please download the corresponding files from [link] and put/symlink it in ./data. The file structure is as follows:

./data
   ├─ data_Argoverse_Tracking
   │    ├─ test_dict_maps.pickle
   │    ├─ test_list_T_gt.pickle
   │    └─ test_samples.pickle
   │ 
   ├─ data_KITTI
   │    ├─ test_dict_maps.pickle
   │    ├─ test_list_T_gt.pickle
   │    └─ test_samples.pickle
   │ 
   ├─ deep
   │    ├─ d3feat.results.pkl.Argoverse_Tracking
   │    ├─ d3feat.results.pkl.KITTI
   │    ├─ fcgf.results.pkl.Argoverse_Tracking
   │    └─ fcgf.results.pkl.KITTI
----

Usage

To run the code, simply use the following command and specify the config file name.:

python3 run_eval.py --path_cfg=configs.config

For trying out existing methods, first edit config.py to config the method list, the dataset name, and the local dataset path.

For trying out new methods, please add the registration function to tester.py and add the method configuration to method.py and the parameters to method.json.

To visualize the resulting recall curves, please run

python3 make_recall_figure_threshold.py --path_cfg=configs.config

It will generate the recall plot and error density plot in ./output_eval_{dataset_name}. Here is an expected outout:

Acknowledgement

This work was supported by the CMU Argo AI Center for Autonomous Vehicle Research. We also thank our labmates for the valuable suggestions to improve this paper.

References

  1. Teaser++
  2. Open3d
  3. KITTI Odometry Dataset
  4. Argoverse 3D Tracking 1.1
  5. FCGF
  6. D3Feat
Owner
Allie
PhD student in Robotics Institute of Carnegie Mellon University
Allie
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021