👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

Overview

👐 OpenHands: Sign Language Recognition Library

Making Sign Language Recognition Accessible

Check the documentation on how to use the library:
ReadTheDocs: 👐 OpenHands

License

This project is released under the Apache 2.0 license.

Citation

If you find our work useful in your research, please consider citing us:

@misc{2021_openhands_slr_preprint,
      title={OpenHands: Making Sign Language Recognition Accessible with Pose-based Pretrained Models across Languages}, 
      author={Prem Selvaraj and Gokul NC and Pratyush Kumar and Mitesh Khapra},
      year={2021},
      eprint={2110.05877},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Comments
  • Question about GSL dataset

    Question about GSL dataset

    I have no idea how to get the Isolated gloss sign language recognition (GSL isol.) data (xxx_signerx_repx_glosses), while I only find the continuous sign language recognition data (xxx_signerx_repx_sentences) from https://zenodo.org/record/3941811.

    Thank you very much for any information about this.

    opened by snorlaxse 6
  • Question about 'Config-based training'

    Question about 'Config-based training'

    I try the code from Config-based training as below.

    import omegaconf
    from openhands.apis.classification_model import ClassificationModel
    from openhands.core.exp_utils import get_trainer
    import os 
    
    os.environ["CUDA_VISIBLE_DEVICES"]="2,3"
    cfg = omegaconf.OmegaConf.load("examples/configs/lsa64/decoupled_gcn.yaml")
    trainer = get_trainer(cfg)
    
    
    model = ClassificationModel(cfg=cfg, trainer=trainer)
    model.init_from_checkpoint_if_available()
    model.fit()
    
    /raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:747: UserWarning: You requested multiple GPUs but did not specify a backend, e.g. `Trainer(accelerator="dp"|"ddp"|"ddp2")`. Setting `accelerator="ddp_spawn"` for you.
      "You requested multiple GPUs but did not specify a backend, e.g."
    GPU available: True, used: True
    TPU available: False, using: 0 TPU cores
    IPU available: False, using: 0 IPUs
    /raid/xxx/OpenHands/openhands/apis/inference.py:21: LightningDeprecationWarning: The `LightningModule.datamodule` property is deprecated in v1.3 and will be removed in v1.5. Access the datamodule through using `self.trainer.datamodule` instead.
      self.datamodule.setup(stage=stage)
    Found 64 classes in train splits
    Found 64 classes in test splits
    Train set size: 2560
    Valid set size: 320
    /raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/core/datamodule.py:424: LightningDeprecationWarning: DataModule.setup has already been called, so it will not be called again. In v1.6 this behavior will change to always call DataModule.setup.
      f"DataModule.{name} has already been called, so it will not be called again. "
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [2,3]
    Traceback (most recent call last):
      File "study_train.py", line 15, in <module>
        model.fit()
      File "/raid/xxx/OpenHands/openhands/apis/classification_model.py", line 104, in fit
        self.trainer.fit(self, self.datamodule)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 552, in fit
        self._run(model)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 917, in _run
        self._dispatch()
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 985, in _dispatch
        self.accelerator.start_training(self)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
        self.training_type_plugin.start_training(trainer)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/ddp_spawn.py", line 158, in start_training
        mp.spawn(self.new_process, **self.mp_spawn_kwargs)
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 199, in spawn
        return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
      File "/raid/xxx/anaconda3/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 148, in start_processes
        process.start()
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/process.py", line 112, in start
        self._popen = self._Popen(self)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/context.py", line 284, in _Popen
        return Popen(process_obj)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/popen_spawn_posix.py", line 32, in __init__
        super().__init__(process_obj)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/popen_fork.py", line 20, in __init__
        self._launch(process_obj)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/popen_spawn_posix.py", line 47, in _launch
        reduction.dump(process_obj, fp)
      File "/raid/xxx/anaconda3/lib/python3.7/multiprocessing/reduction.py", line 60, in dump
        ForkingPickler(file, protocol).dump(obj)
    AttributeError: Can't pickle local object 'DecoupledGCN_TCN_unit.__init__.<locals>.<lambda>'
    (base) 
    
    opened by snorlaxse 4
  • installation issue

    installation issue

    Hello, thank you for providing such a great framework, but there was an error when I import the module. Could you please offer me a help? code:

    import omegaconf
    from openhands.apis.classification_model import ClassificationModel
    from openhands.core.exp_utils import get_trainer
    
    cfg = omegaconf.OmegaConf.load("1.yaml")
    trainer = get_trainer(cfg)
    
    model = ClassificationModel(cfg=cfg, trainer=trainer)
    model.init_from_checkpoint_if_available()
    model.fit()
    

    ERROR: Traceback (most recent call last): File "/home/hxz/project/pose_SLR/main.py", line 3, in from openhands.apis.classification_model import ClassificationModel ModuleNotFoundError: No module named 'openhands.apis'

    opened by Xiaolong-han 4
  • visibility object

    visibility object

    https://github.com/narVidhai/SLR/blob/2f26455c7cb530265618949203859b953224d0aa/scripts/mediapipe_extract.py#L48

    Doesn't this object contain visibility value as well. If so, we could add some logic for conditioning and merge it with the above function

    enhancement 
    opened by grohith327 3
  • About the wrong st_gcn checkpoints files provided on GSL

    About the wrong st_gcn checkpoints files provided on GSL

    import omegaconf
    from openhands.apis.inference import InferenceModel
    
    cfg = omegaconf.OmegaConf.load("GSL/gsl/st_gcn/config.yaml")
    model = InferenceModel(cfg=cfg)
    model.init_from_checkpoint_if_available()
    if cfg.data.test_pipeline.dataset.inference_mode:
        model.test_inference()
    else:
        model.compute_test_accuracy()
    
    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    /tmp/ipykernel_6585/2983784194.py in <module>
          4 cfg = omegaconf.OmegaConf.load("GSL/gsl/st_gcn/config.yaml")
          5 model = InferenceModel(cfg=cfg)
    ----> 6 model.init_from_checkpoint_if_available()
          7 if cfg.data.test_pipeline.dataset.inference_mode:
          8     model.test_inference()
    
    ~/OpenHands/openhands/apis/inference.py in init_from_checkpoint_if_available(self, map_location)
         47         print(f"Loading checkpoint from: {ckpt_path}")
         48         ckpt = torch.load(ckpt_path, map_location=map_location)
    ---> 49         self.load_state_dict(ckpt["state_dict"], strict=False)
         50         del ckpt
         51 
    
    ~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in load_state_dict(self, state_dict, strict)
       1050         if len(error_msgs) > 0:
       1051             raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    -> 1052                                self.__class__.__name__, "\n\t".join(error_msgs)))
       1053         return _IncompatibleKeys(missing_keys, unexpected_keys)
       1054 
    
    RuntimeError: Error(s) in loading state_dict for InferenceModel:
    	size mismatch for model.encoder.A: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.st_gcn_networks.0.gcn.conv.weight: copying a param with shape torch.Size([128, 2, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 2, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.0.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.1.gcn.conv.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.1.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.2.gcn.conv.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.2.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.3.gcn.conv.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.3.gcn.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
    	size mismatch for model.encoder.st_gcn_networks.4.gcn.conv.weight: copying a param with shape torch.Size([256, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([384, 64, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.4.gcn.conv.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([384]).
    	size mismatch for model.encoder.st_gcn_networks.5.gcn.conv.weight: copying a param with shape torch.Size([256, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([384, 128, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.5.gcn.conv.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([384]).
    	size mismatch for model.encoder.st_gcn_networks.6.gcn.conv.weight: copying a param with shape torch.Size([256, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([384, 128, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.6.gcn.conv.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([384]).
    	size mismatch for model.encoder.st_gcn_networks.7.gcn.conv.weight: copying a param with shape torch.Size([512, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([768, 128, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.7.gcn.conv.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([768]).
    	size mismatch for model.encoder.st_gcn_networks.8.gcn.conv.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([768, 256, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.8.gcn.conv.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([768]).
    	size mismatch for model.encoder.st_gcn_networks.9.gcn.conv.weight: copying a param with shape torch.Size([512, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([768, 256, 1, 1]).
    	size mismatch for model.encoder.st_gcn_networks.9.gcn.conv.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([768]).
    	size mismatch for model.encoder.edge_importance.0: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.1: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.2: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.3: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.4: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.5: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.6: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.7: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.8: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    	size mismatch for model.encoder.edge_importance.9: copying a param with shape torch.Size([2, 27, 27]) from checkpoint, the shape in current model is torch.Size([3, 27, 27]).
    
    opened by snorlaxse 2
  • Refactoring code to remove bugs, code smells

    Refactoring code to remove bugs, code smells

    Following changes were made as part of the PR

    • Refactored data loading component of the package
    • Created/Renamed files under slr.datasets.isolated to allow for modularization
    • added __init__.py files for importing
    opened by grohith327 1
  • ST-GCN does not work for mediapipe

    ST-GCN does not work for mediapipe

    Currently the openpose layout seems to be hardcoded in graph_utils.py's Graph class. Should we also add a layout for mediapipe, or pass the joints via yml?

    bug 
    opened by GokulNC 1
  • Scale normalization for pose

    Scale normalization for pose

    For example, if the signer is moving forward or backward in the video, this augmentation will help normalize the scale throughout the video: https://github.com/AmitMY/pose-format#data-normalization

    Will involve explicitly specifying the joint (edge) based on which scaling has to be performed.

    enhancement 
    opened by GokulNC 1
  • Function not called

    Function not called

    https://github.com/narVidhai/SLR/blob/2f26455c7cb530265618949203859b953224d0aa/scripts/mediapipe_extract.py#L129

    Is this function not called anywhere?

    question 
    opened by grohith327 1
  • Support for GCN + BERT model

    Support for GCN + BERT model

    Add the model proposed in

    https://openaccess.thecvf.com/content/WACV2021W/HBU/papers/Tunga_Pose-Based_Sign_Language_Recognition_Using_GCN_and_BERT_WACVW_2021_paper.pdf

    enhancement 
    opened by Prem-kumar27 0
  • Sinusoidal Train/Val Accuracy

    Sinusoidal Train/Val Accuracy

    I'm noticing that the transformer and the SL-GCN architectures, while learning on WLASL2000, have an accuracy curve that resembles a sine curve with period of about 20 epochs and amplitude of about 5-10%. I am using the example config provided in the repo, and verified that the batches are being shuffled. I have also played around with logging on_step=True in case this is an artifact of torch.nn.log, but that didn't help either. Any ideas why this is happening?

    opened by leekezar 1
  • Lower accuracy when inferring a single video

    Lower accuracy when inferring a single video

    Hello,

    When I supply the inference model with multiple videos, the model predicts all of them right. But if I supply only one video then the prediction is wrong. I am curious about the cause of this? Can anyone please explain?

    Thank you!

    opened by burakkaraceylan 1
  • Using `pose-format` for consistent `.pose` files

    Using `pose-format` for consistent `.pose` files

    Seems like for pose data you are using pkl and h5. Also, that you have a custom mediapipe holistic script

    Personally I believe it would be more shareable, and faster, to use a binary format like https://github.com/AmitMY/pose-format Every pose file also declares its content, so you can transfer them between projects, or convert them to different formats with relative is.

    Besides the fact that it has a holistic loading script and multiple formats of OpenPose, it is a binary format which is faster to load, allows loading to numpy, torch and tensorflow, and can perform several operations on poses.

    It also allows the visualization of pose files, separately or on top of videos, and while admittedly this repository is not perfect, in my opinion it is better than having json or pkl files.

    opened by AmitMY 9
  • Consistent Dataset Handling

    Consistent Dataset Handling

    Very nice repo and documentation!

    I think this repository can benefit from using https://github.com/sign-language-processing/datasets as data loaders.

    It is fast, consistent across datasets, and allows loading videos / poses from multiple datasets. If a dataset you are using is not there, you can ask for it or add it yourself, it is a breeze.

    The repo supports many datasets, multiple pose estimation formats, binary pose files, fps and resolution manipulations, and dataset disk mapping.

    Finally, this would make this repo less complex. This repo does pre-training and fine-tuning, the other repo does datasets, and they could be used together.

    Please consider :)

    opened by AmitMY 5
  • Resume training, but load only parameters

    Resume training, but load only parameters

    Not the entire state stored by Lightning.

    Use an option called pretrained to achieve it, like this: https://github.com/AI4Bharat/OpenHands/blob/26c17ed0fca2ac786950d1f4edfa5a88419d06e6/examples/configs/include/decoupled_gcn.yaml#L1

    important feature 
    opened by GokulNC 1
Owner
AI4Bhārat
Building open-source AI solutions for India!
AI4Bhārat
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022