Repository for DNN training, theory to practice, part of the Large Scale Machine Learning class at Mines Paritech

Overview

DNN Training, from theory to practice

This repository is complementary to the deep learning training lesson given to les Mines ParisTech on the 11th of March 2022 as part of the Large Scale Machine Learning class.

You can find here the slides of the class.

Requirements

To get started, clone it and prepare a new virtual env.

git clone https://github.com/adefossez/dnn_theo_practice
cd dnn_theo_practice
python3 -m venv env
source env/bin/activate
python3 -m pip install -r requirements.txt

Note: it can be safer to install PyTorch through a conda environment to make sure all proper versions of CUDA realted libraries are installed and used. We use pip here for simplicity.

Basic training pipeline

To get started, you can run

python -m basic.train

You can tweak some hyper parameters:

python -m basic.train --lr 0.1 --epochs 30 --model mobilenet_v2

This basic pipeline provides all the essential tools for training a neural network:

  • automatic experiment naming,
  • logging and metric dumping,
  • checkpointing with automatic resume.

Looking at basic/train.py you will see that 90% of the code is not deep learning but pure engineering. Some frameworks like PyTorch Lightning can save you some of this trouble, at the cost of losing control and understanding over what happens. In any case it is good to have an idea of how things work under the hood!

PyTorch-Lightning training pipeline

Insite the pl_hydra folder, I provide the same pipeline, but using PyTorch-Lightning along with Hydra, as an alternative to argparse. Have a look at pl_hydra/train.py to see the differences with the previous implementation.

python -m pl_hydra.train optim.lr=0.1 model=mobilenet_v2

Using existing frameworks:

At this point, it is a good time to introduce a few frameworks you might want to use for your projects.

Hydra

Hydra handles things like logging, configuration parsing (based on YAML files, which is a bit nicer than argparse, especially for large projects), and also has support for some grid search scheduling with a dedicated language. It also supports meta-optimizers like Nevergrad (see after).

Nevergrad

Nevergrad is a framework for gradient free optimization. It can be used to automatically tune your model or optimization hyper-parameters with smart random search.

PyTorch-Lightning

PyTorch Lightning takes care of logging, distributed training, checkpointing and many more boilerplate parts of a deep learning research project. It is powerful but also quite complex, and you will lose some control over the training pipeline.

Dora

Dora is an experiment management framework:

  • Grid searches are expressed as pure python.
  • Experiments have an automatic signature assigned based on its args.
  • Keeps in sync experiments defined in grid files, and those running on the cluster.
  • Basic terminal based reporting of job states, metrics etc.

Dora allows you to scale up to hundreds of experiments without losing your sanity.

Plotting and monitoring utilities

While it is always good to have basic metric reporting inside logs, it can be more conveniant to track experimental progress through a web browser. TensorBoard, initially developed for TensorFlow provide just that. A fully hosted alternative is Wandb. Finally, HiPlot is a lightweight package to easily make sense of the impact of hyperparameters on the metrics of interest.

Unix tools

It is a good idea to learn to master the standard Unix/Linux tools! For large scale machine learning, you will often have to run experiments on a remote cluster, with only SSH access. tmux is a must have, as well as knowing at least of one terminal based file editor (nano is the simplest, emacs or vim are more complex but quite powerful). Take some time to learn about tuning your bashrc, setting up aliases for often used commands etc.

You will probably need tools like grep, less, find or ack. I personnaly really enjoy fd, an alternative to find with some intuitive interface. Similarly ag is a nice way to quickly look through a codebase in the terminal. If you need to go through a lot of logs, you will enjoy ripgreg.

License

This code in this repository is released into the public domain. You can freely reuse any part of it and you don't even need to say where you found it! See the LICENSE for more information.

The slides are released under Creative Commons CC-BY-NC.

Owner
Alexandre Défossez
Alexandre Défossez
An end-to-end encrypted chat

An end-to-end encrypted chat, that allows users to anonymously talk without ip logs, personal info, or need for registration.

Privalise 1 Nov 27, 2021
Demo code for "Logs in distributed systems" webinar

Hexlet Logs Demo Пререквизиты docker-compose python3 Учетка в DataDog Базовое понимание, что такое логи (можно почитать гайд

Anton Markelov 1 Dec 01, 2021
Streamlit Component, for a Chatbot UI

st-chat Streamlit Component, for a Chat-bot UI, example app authors - @yashppawar & @YashVardhan-AI Installation Install streamlit-chat with pip pip i

Yash AI 99 Jan 07, 2023
This is a practice on Airflow, which is building virtual env, installing Airflow and constructing data pipeline (DAGs)

airflow-test This is a practice on Airflow, which is Builing virtualbox env and setting Airflow on that env Installing Airflow using python virtual en

Jaeyoung 1 Nov 01, 2021
This repository contains the exercices for the robotics class at Supaero, 2022.

Supaero robotics, 2022 This repository contains the exercices for the robotics class at Supaero, 2022. The exercices are organized by notebook. Each n

Gepetto team, LAAS-CNRS 5 Aug 01, 2022
Online HackerRank problem solving challenges

LinkedListHackerRank Online HackerRank problem solving challenges This challenge is part of a tutorial track by MyCodeSchool You are given the pointer

Sefineh Tesfa 1 Nov 21, 2021
Sudo type me a payload

payloadSecretary Sudo type me a payload Have you ever found yourself having to perform a test, and a client has provided you with a VM inside a VDI in

7 Jul 21, 2022
A simple 3D rigid body simulation written in python

pyRigidBody3d A simple 3D rigid body simulation written in python

30 Oct 07, 2022
Extra scripts to improve user experience related to OpenTaiko

OpenTaiko-Utils Extra scripts to improve user experience related to OpenTaiko osu2tja /!\ IMPORTANT NOTE /!\ Converted charts that aren't yours are fo

2 Dec 25, 2022
A professional version for LBS

呐 Yuki Pro~ 懒兵服御用版本,yuki小姐觉得没必要单独造一个仓库,但懒兵觉得有必要并强制执行 将na-yuki框架抽象为模块,功能拆分为独立脚本,使用脚本注释器使其作为py运行 文件结构: na_yuki_pro_example.py 是一个说明脚本,用来直观展示na,yuki! Pro

1 Dec 21, 2021
Show Public IP Information In Linux Taskbar

IP Information In Linux Taskbar 📍 How Use IP Script? 🤔 Download ip.py script and save somewhere in your system. Add command applet in your taskbar a

HOP 2 Jan 25, 2022
A simple BrainF**k compiler written in Python

bf-comp A simple BrainF**k compiler written in Python. What else were you looking for?

1 Jan 09, 2022
An account generator for guilded.gg that I made a while back and decided to bring back up

An account generator for guilded.gg that I made a while back and decided to bring back up

8 Nov 17, 2022
Schemdule is a tiny tool using script as schema to schedule one day and remind you to do something during a day.

Schemdule is a tiny tool using script as schema to schedule one day and remind you to do something during a day. Platform Python Install Use pip: pip

StardustDL 4 Sep 13, 2021
Hands-on machine learning workshop

emb-ntua-workshop This workshop discusses introductory concepts of machine learning and data mining following a hands-on approach using popular tools

ISSEL Soft Eng Team 12 Oct 30, 2022
Machine Learning powered app to decide whether a photo is food or not.

Food Not Food dot app ( 🍔 🚫 🍔 ) Code for building a machine Learning powered app to decide whether a photo is of food or not. See it working live a

Daniel Bourke 48 Dec 28, 2022
Validate UC alumni identifier numbers with Python 3.

UC number validator Validate UC alumni identifier numbers with Python 3. Getting started Install the library with: pip install -U ucnumber Usage from

Open Source eUC 1 Jul 07, 2021
Implementation of the MDMC method to search for magnetic ground state using VASP

Implementation of MDMC method ( by Olga Vekilova ) to search for magnetic ground state using VASP

Utkarsh Singh 1 Nov 27, 2021
Intelligent Systems Project In Python

Intelligent Systems Project In Python

RLLAB 3 May 16, 2022
Fully cross-platform toolkit (and library!) for MachO+Obj-C editing/analysis

fully cross-platform toolkit (and library!) for MachO+Obj-C editing/analysis. Includes a cli kit, a curses GUI, ObjC header dumping, and much more.

cynder 301 Dec 28, 2022