Machine Learning powered app to decide whether a photo is food or not.

Overview

Food Not Food dot app ( 🍔 🚫 🍔 )

Code for building a machine Learning powered app to decide whether a photo is of food or not.

See it working live at: https://foodnotfood.app

Yes, that's all it does.

It's not perfect.

But think about it.

How do you decide what's food or not?

Inspiration

Remember hotdog not hotdog?

That's what this repo builds, excepts for food or not.

It's arguably harder to do food or not.

Because there's so many options for what a "food" is versus what "not food" is.

Whereas with hotdog not hotdog, you've only got one option: is it a hotdog or not?

Video and notes

I built this app during a 10-hour livestream to celebrate 100,000 YouTube Subscribers (thank you thank you thank you).

The full stream replay is available to watch on YouTube.

The code has changed since the stream.

I made it cleaner and more reproducible.

My notes are on Notion.

Steps to reproduce

Note: If this doesn't work, please leave an issue.

To reproduce, the following steps are best run in order.

You will require and installation of Conda, I'd recommend Miniconda.

Clone the repo

git clone https://github.com/mrdbourke/food-not-food
cd food-not-food

Environment creation

I use Conda for my environments. You could do similar with venv and pip but I prefer Conda.

This code works with Python 3.8.

conda create --prefix ./env python=3.8 -y
conda activate ./env
conda install pip

Installing requirements

Getting TensorFlow + GPU to work

Follow the install instructions for running TensorFlow on the GPU.

This will be required for model_building/train_model.py.

Note: Another option here to skip the installation of TensorFlow is to use your global installation of TensorFlow and just install the requirements.txt file below.

Other requirements

If you're using your global installation of TensorFlow, you might be able to just run pip install requirements.txt in your environment.

Or if you're running in another dedicated environment, you should also be able to just run pip install -r requirements.txt.

pip install -r requirements.txt

Getting the data

  1. Download Food101 data (101,000 images of food).
python data_download/download_food101.py
  1. Download a subset of Open Images data. Use the -n flag to indicate how many images from each set (train/valid/test) to randomly download.

For example, running python data_download/download_open_images.py -n=100 downloads 100 images from the training, validation and test sets of Open Images (300 images in total).

The downloading for Open Images data is powered by FiftyOne.

python data_download/download_open_images.py -n=100

Processing the data

  1. Extract the Food101 data into a "food" directory, use the -n flag to set how many images of food to extract, for example -n=10000 extracts 10,000 random food images from Food101.
python data_processing/extract_food101.py -n=10000
  1. Extract the Open Images images into open_images_extracted directory.

The data_processing/extract_open_images.py script uses the Open Images labels plus a list of foods and not foods (see data/food_list.txt and data/non_food_list.txt) to separate the downloaded Open Images.

This is necessary because some of the images from Open Images contain foods (we don't want these in our not_food class).

python data_processing/extract_open_images.py
  1. Move the extracted images into "food" and "not_food" directories.

This is necessary because our model training file will be searching for class names by the title of our directories (food and not_food).

python data_processing/move_images.py 
  1. Split the data into training and test sets.

This creates a training and test split of food and not_food images.

This is so we can verify the performance of our model before deploying it.

It'll create the structure:

train/
    food/
        image1.jpeg
        image2.jpeg
        ...
    not_food/
        image100.jpeg
        image101.jpeg
        ...
test/
    food/
        image201.jpeg
        image202.jpeg
        ...
    not_food/
        image301.jpeg
        image302.jpeg
        ...

To do this, run:

python data_processing/data_splitting.py

Modeling the data

Note: This will require a working install of TensorFlow.

Running the model training file will produce a TensorFlow Lite model (this is small enough to be deployed in a browser) saved to the models directory.

The script will look for the train and test directories and will create training and testing datasets on each respectively.

It'll print out the progress at each epoch and then evaluate and save the model.

python model_building/train_model.py

What data is used?

The current deployed model uses about 40,000 images of food and 25,000 images of not food.

Owner
Daniel Bourke
Machine Learning Engineer live on YouTube.
Daniel Bourke
This tool helps you to reverse any regex and gives you the opposite/allowed Letters,numerics and symbols.

Regex-Reverser This tool helps you to reverse any regex and gives you the opposite/allowed Letters,numerics and symbols. Screenshots Usage/Examples py

x19 0 Jun 02, 2022
Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format.

Showdown-BDSP-Converter Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format. Download the lat

Alden Mo 2 Jan 02, 2022
A python package that adds "docs" command to disnake

About This extension's purpose is of adding a "docs" command, its purpose is to help documenting in chat. How To Load It from disnake.ext import comma

7 Jan 03, 2023
Forward RSS feeds to your email address, community maintained

Getting Started With rss2email We highly recommend that you watch the rss2email project on GitHub so you can keep up to date with the latest version,

248 Dec 28, 2022
Simple Python API for the Ergo Platform Explorer

Ergo is a "Resilient Platform for Contractual Money." It is designed to be a platform for applications with the main focus to provide an efficient, se

7 Jul 06, 2021
Python: Wrangled and unpivoted gaming datasets. Tableau: created dashboards - Market Beacon and Player’s Shopping Guide.

Created two information products for GameStop. Using Python, wrangled and unpivoted datasets, and created Tableau dashboards.

Zinaida Dvoskina 2 Jan 29, 2022
NasaApod - Astronomy Picture of the Day

Astronomy Picture of the Day Get interesting Astronomical pictures with a brief

Shripad Rao 1 Feb 15, 2022
frida-based ceserver. iOS analysis is possible with Cheat Engine.

frida-ceserver frida-based ceserver. iOS analysis is possible with Cheat Engine. Original by Dark Byte. Usage Install frida on iOS. python main.py Cyd

KenjiroIchise 89 Jan 08, 2023
Parser for the GeoSuite[tm] PRV export format

Parser for the GeoSuite[tm] PRV export format This library provides functionality to parse geotechnical investigation data in .prv files generated by

EMerald Geomodelling 1 Dec 17, 2021
Python Script to add OpenGapps, Magisk, libhoudini translation library and libndk translation library to waydroid !

Waydroid Extras Script Script to add gapps and other stuff to waydroid ! Installation/Usage "lzip" is required for this script to work, install it usi

Casu Al Snek 331 Jan 02, 2023
Localization and multifractal properties of the long-range Kitaev chain in the presence of an Aubry-André-Harper modulation

This repository contains the code for the paper Localization and multifractal properties of the long-range Kitaev chain in the presence of an Aubry-André-Harper modulation.

Joana Fraxanet 2 Apr 17, 2022
A simple BrainF**k compiler written in Python

bf-comp A simple BrainF**k compiler written in Python. What else were you looking for?

1 Jan 09, 2022
Example of my qtile config using the gruvbox colorscheme.

QTILE config Example of my qtile config using the gruvbox colorscheme. unicodes.py unicodes.py returns a widget.TextBox with a unicode. Currently it c

Imanuel Febie 31 Jan 02, 2023
📦 A Human's Ultimate Guide to setup.py.

📦 setup.py (for humans) This repo exists to provide an example setup.py file, that can be used to bootstrap your next Python project. It includes som

Navdeep Gill 5k Jan 04, 2023
Pydesy package description (EN)

Pydesy package description (EN) Last version: 0.0.2 Geodetic library, which includes the following tasks: 1. Calculation of theodolite traverse (tachy

1 Feb 03, 2022
Python Programming Bootcamp

python-bootcamp Python Programming Bootcamp Begin: 27th August 2021 End: 8th September 2021 Registration deadline: 22nd August 2021 Fees: No course or

Rohitash Chandra 11 Oct 19, 2022
A python mathematics module

A python mathematics module

Fayas Noushad 4 Nov 28, 2021
Python Classes Without Boilerplate

attrs is the Python package that will bring back the joy of writing classes by relieving you from the drudgery of implementing object protocols (aka d

The attrs Cabal 4.6k Jan 02, 2023
Solve various integral equations using numerical methods in Python

Solve Volterra and Fredholm integral equations This Python package estimates Volterra and Fredholm integral equations using known techniques. Installa

Matthew Wildrick Thomas 18 Nov 28, 2022
Курс "Искусственный интеллект и машинное обучение"

Искусственный интеллект и машинное обучение О курсе Данный репозиторий содержит в себе сопроводительный учебный материал для курса "Искусственный инте

Dmitry Aladin 19 Dec 04, 2022