A simple code for plotting figure, colorbar, and cropping with python

Overview

Python Plotting Tools

This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show the results.

Dependencies: Python 3.+, numpy, and matplotlib.

Table of Contents

Preliminary

Layout of the diagram

The following shows a simple but complete diagram.

It contains the following common components. When creating a new diagram, we will modify these components to present our data:

  • Title
  • X-Label, xtick, and, xticklabel
  • Y-Label, ytick, and, yticklabel
  • Line, Marker, Legend
  • Grid

Sample configuration file

In this code, we define the appearance of the diagram with a configuration file. Then, we can plot the diagram by simply running:

python plot_diagram.py examples/demo/simple_plot.conf

The configuration file for the above simple plot is shown below with comments.

# CONFIGURATION FILE

# Comments start with '#'; 
# Parameters start with '!';
# If a parameter contains space, please replace the space with '&' for correct parsing
# For bool type, 1 is True else False

# Plot type: ploty|plotxy|plottwins
# ploty: The input data only contains Y values, the X values are generated as [0, ..., len(Y)]
# plotxy: The input data contains both X and Y values
# plottwins: The input data only contains Y values. Plot figure with two different Y-axis
! plot_type plotxy

# Figure format: pdf|jpg|png
! format pdf

# Canvas setting, fig size in inches
# https://matplotlib.org/devdocs/gallery/subplots_axes_and_figures/figure_size_units.html
! width 7
! height 3
! dpi 220

# Line and marker setting, different lines have different colors and marker shapes
# https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
# Example colors: 'r', 'k', 'b', 'g', 'y', 'm', 'c', 'tab:blue', 'tab:orange'
# Example markers: 'd', 'v', '1', '8', 'o', '^', '<', '>', 's', '*', 'p' 
! linewidth 1.5
! line_style -
! color tab:blue tab:orange tab:green
! markersize 4
! marker d v *

# Title and label setting 
# None indicates ignore; '&' is a placeholder for space;
# Eample font sizes: 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large', 'larger', 'smaller'
! title Simple&Plot
! title_font x-large
! xlabel x-Label
! xlabel_font x-large
! ylabel y-Label
! ylabel_font x-large

# Legend setting
# https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
# Example legend loc: 'best', 'upper left', 'upper right', 'lower left', 'lower right'
! legend Linear Quadratic Cubic
! legend_loc upper&left
! legend_font x-large
! legend_ncol 1

# Set grid on or off, 1 for on, 0 for off
! grid_on 1

# Data configuration
# Store the data values of a curve in a file, e.g., data.txt
# If have multiple curves, just list the file names one by one
! datafile data/linear.txt data/quadratic.txt data/cubic.txt

# Specify the maximum number of points, 
! max_point_num 1000

# set whether sort the data (None|ascend|descend), all x values should be the same for different curves
! sort_data None

Examples for Plotting Curves

Plot simple curves

The main difference between the following three configuration files is the number of curves.

# Figure at the below left
python plot_diagram.py examples/curve_simple_example/ploty_single_curve.conf

# Figure at the below middle
python plot_diagram.py examples/curve_simple_example/ploty_two_curves.conf

# Figure at the below right
python plot_diagram.py examples/curve_simple_example/ploty_multi_curves.conf

Plot dots

By adding "! draw_dot 1" in the .conf, we can plot dots instead of lines.

python plot_diagram.py examples/curve_simple_example/ploty_multi_dots.conf

Plot figure with customized xticklabel

We can manually set the xticklabel in the configuration file. e.g., adding "! xticklabel 2 4 9 18 30 36 45 60 90 180 $\infty$".

python plot_diagram.py examples/curve_custom_xtick/ploty_set_xtick.conf

We can also load the xticklabel from a file by setting the path, e.g., adding "! xtick_path data/merl_name.txt". We can rotate the xticklabel if they are too long by adding "! xtick_rot 90".

python plot_diagram.py examples/curve_custom_xtick/ploty_set_rotate_xtick.conf
# Remember that we can plot dots by setting draw_dot to 1 in the configuration file

Plot figure with two different Y-axes

By setting the plot_type to plottwins, we can draw the figure with two different Y-axes. But remember that this current implementation only supports two curves, one for each Y-axis.

python plot_diagram.py examples/curve_twin_y_axis/plottwins_yaxis.conf

Plot figure with customized legends

Note that this example is a hardcode for this specific legend pattern (i.e., two curves share the same legend).

python plot_diagram.py examples/curve_custom_legend/ploty_custom_legend.conf

Examples for Plot Functions

TODO.

Examples for Plotting Barchart

Layout of the barchart

The following shows a simple barchart.


It contains the following common components. When creating a new barchart, we will modify these components to present our data:

  • Title
  • X-Label, xtick, and, xticklabel
  • Y-Label, ytick, and, yticklabel
  • Bar, Text, Legend
  • Grid

The above barchart can be generated by running:

python plot_diagram.py examples/barchart_example1/simple_barchart.conf
Configuration file for the above barchart
# CONFIGURATION FILE

# Comments start with '#'; 
# Parameters start with '!';
# If a parameter contains space, please replace the space with '&' for correct parsing
# For bool type, 1 is True else False

# Plot type: ploty|plotxy|plottwins
# ploty: The input data only contains Y values, the X values are generated as [0, ..., len(Y)]
# plotxy: The input data contains both X and Y values
# plottwins: The input data only contains Y values. Plot figure with two different Y-axis
    ! plot_type plotbar

# Figure format: pdf|jpg|png
    ! format pdf

# Canvas setting, fig size in inches
# https://matplotlib.org/devdocs/gallery/subplots_axes_and_figures/figure_size_units.html
    ! width 5.5
    ! height 3
    ! dpi 220

# Data configuration
# Store the data values of the barchart in a single file, e.g., data.txt
# Each column corresponds to a group
# The number of row equals to the number of bars in a group 
    ! datafile data/bar_data_3group.txt

# IMPORTANT: Please remember to update the color, legend, xticklabel to match the input

# Bar setting
# Opacity sets the transparency of the bar, 0 indicates solid color
# Number of color and Opacity should equal to the bar numbers
    ! bar_width 0.3
    ! color tab:blue tab:red
    ! opacity 0.4 0.4
    ! y_min 0
    ! y_max 1

# xtick and ytick setting
    ! xticklabel vs.&Method1 vs.&Method2 vs.&Method3
# ! ytick 0 0.2 0.4 0.6 0.8 1.0
# ! yticklabel 0 20% 40% 60% 80% 100%

# Text setting
    ! put_text 1
    ! text_font 18
    ! percentage 0

# Title and label setting 
# None indicates ignore; '&' is a placeholder for space;
# Eample font sizes: 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large', 'larger', 'smaller'
    ! title Title
    ! title_font x-large
    ! xlabel x-Label
    ! xlabel_font x-large
    ! ylabel y-Label
    ! ylabel_font x-large

# Legend setting
# https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
# Example legend loc: 'best', 'upper left', 'upper right', 'lower left', 'lower right'
    ! legend Vote&Ours Vote&Others
    ! legend_loc upper&left
    ! legend_font xx-large
    ! legend_ncol 1
# You might need to tune the following bbox_to_anchor parameters to manually place the legends
    ! bbox_to_anchor -0.015 1.40

# Set grid on or off, 1 for on, 0 for off
    ! grid_on 1

Plot barchart with customized yticklabel

python plot_diagram.py examples/barchart_example1/simple_barchart_custom_ytick.conf

We set yticklabel in percentage, legend column number to 2, and show text in percentage, by adding the following to the config file.

! ytick 0 0.2 0.4 0.6 0.8 1.0
! yticklabel 0 20% 40% 60% 80% 100%
! legend_ncol 2
! percentage 1

Plot barchart with four bars in each group

python plot_diagram.py examples/barchart_example2/barchart_color.conf

Create Colorbar

We also provide a simple script to generate colorbar.

python img_tools/color_bar.py --colormap jet
python img_tools/color_bar.py --colormap jet --horizontal
python img_tools/color_bar.py --colormap viridis
python img_tools/color_bar.py --colormap viridis --horizontal

Crop Patches for Zoom-in Comparison

As it is very common to show zoom-in comparison between different methods in the paper, we provide a small image cropping scripts for this task.

By specifying the directory storing images, the desired box locations, and the colors, the following command can crop and highlight the boxes in the original images. However, you have to determine the locations of the boxes [left top bottom right] using other softwares.

python img_tools/image_cropper.py --in_dir examples/image_cropper_example/ -k '*.jpg' \
    --save_dir ROI --save_ext .jpg \
    --boxes 118 60 193 150 --boxes 371 452 431 521 --colors r g
# bash scripts/image_cropping.sh 


We can also add arrows onto the images to further highlight the differences.

python img_tools/image_cropper.py --in_dir examples/image_cropper_example/ --key '*.jpg' \
    --save_dir ROI_arrow --save_ext .jpg \
    --boxes 118 60 193 150 --boxes 371 452 431 521 --colors r g \
    --arrows 86 138 99 154 --arrows 502 412 488 393 --arrow_color r g


TODO: support selecting boxes in an interactive manner.

Owner
Guanying Chen
Guanying Chen
Simple Inkscape Scripting

Simple Inkscape Scripting Description In the Inkscape vector-drawing program, how would you go about drawing 100 diamonds, each with a random color an

Scott Pakin 140 Dec 27, 2022
Data Visualizations for the #30DayChartChallenge

The #30DayChartChallenge This repository contains all the charts made for the #30DayChartChallenge during the month of April. This project aims to exp

Isaac Arroyo 7 Sep 20, 2022
Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

EricAugustin 1 Feb 07, 2022
A Bokeh project developed for learning and teaching Bokeh interactive plotting!

Bokeh-Python-Visualization A Bokeh project developed for learning and teaching Bokeh interactive plotting! See my medium blog posts about making bokeh

Will Koehrsen 350 Dec 05, 2022
1900-2016 Olympic Data Analysis in Python by plotting different graphs

🔥 Olympics Data Analysis 🔥 In Data Science field, there is a big topic before creating a model for future prediction is Data Analysis. We can find o

Sayan Roy 1 Feb 06, 2022
Lumen provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

Lumen project provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

HoloViz 120 Jan 04, 2023
Backend app for visualizing CANedge log files in Grafana (directly from local disk or S3)

CANedge Grafana Backend - Visualize CAN/LIN Data in Dashboards This project enables easy dashboard visualization of log files from the CANedge CAN/LIN

13 Dec 15, 2022
Python Data Structures for Humans™.

Schematics Python Data Structures for Humans™. About Project documentation: https://schematics.readthedocs.io/en/latest/ Schematics is a Python librar

Schematics 2.5k Dec 28, 2022
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
A minimal Python package that produces slice plots through h5m DAGMC geometry files

A minimal Python package that produces slice plots through h5m DAGMC geometry files Installation pip install dagmc_geometry_slice_plotter Python API U

Fusion Energy 4 Dec 02, 2022
An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden.

sweden-rent-dashboard An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden. The dashboard/web

Rory Crean 5 Dec 19, 2021
A TileDB backend for xarray.

TileDB-xarray This library provides a backend engine to xarray using the TileDB Storage Engine. Example usage: import xarray as xr dataset = xr.open_d

TileDB, Inc. 14 Jun 02, 2021
A GUI for Pandas DataFrames

About Demo Installation Usage Features More Info About PandasGUI is a GUI for viewing, plotting and analyzing Pandas DataFrames. Demo Installation Ins

Adam Rose 2.8k Dec 24, 2022
A Python-based non-fungible token (NFT) generator built using Samilla and Matplotlib

PyNFT A Pythonic NF (non-fungible token) generator built using Samilla and Matplotlib Use python pynft.py [amount] The intention behind this generato

Ayush Gundawar 6 Feb 07, 2022
Bcc2telegraf: An integration that sends ebpf-based bcc histogram metrics to telegraf daemon

bcc2telegraf bcc2telegraf is an integration that sends ebpf-based bcc histogram

Peter Bobrov 2 Feb 17, 2022
IPython/Jupyter notebook module for Vega and Vega-Lite

IPython Vega IPython/Jupyter notebook module for Vega 5, and Vega-Lite 4. Notebooks with embedded visualizations can be viewed on GitHub and nbviewer.

Vega 335 Nov 29, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 04, 2023
Generate graphs with NetworkX, natively visualize with D3.js and pywebview

webview_d3 This is some PoC code to render graphs created with NetworkX natively using D3.js and pywebview. The main benifit of this approac

byt3bl33d3r 68 Aug 18, 2022
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023