Documentation of the QR code found on new Austrian ID cards.

Overview

Austrian ID Card QR Code

This document aims to be a complete documentation of the format used in the QR area on the back of new Austrian ID cards (Personalausweis) issued after 2nd of August 2021. The launch was acompanied by the introduction of the CHECK-AT app to cryptographically verify the data contained in the code. Unfortunately there is no public documentation of its format and the app is proprietary and obfuscated. The official website claims an open source release is being evaluated, but considering the technology is developed by a private company, youniqx Identity AG, which wants to sell it to other countries as well, I don't believe it will ever happen. I want publicly funded technology to be open source though, so I decided to make my own documentation, hoping anyone who's good at app development will pick it up and make one.

Sections of the QR Code

The QR code consists of 6 semicolon (;) separated sections. Some of them are padded with spaces. They are listed here in the same order as they are in the encoding.

Part 1: Signature

The signature is a base64 encoded hexstring where the first 64 hex characters represent the r value of an ECDSA signature and the last 64 characters represent the s number. Some crypto libraries want the r and s values individually, some as a concatenated bytestring and others as a DER encoded binary. You can create such a DER encoding using the ecdsa.util.sigcode_der function of the ecdsa Python module for example. Most crypto libraries have some way to convert signatures to and from DER encoding.

Part 2: IV

Another base64 encoded hexstring. It is only relevant for generating the signature data.

Part 3: Signature ID

Not really a signature ID, but that's what it's called in the code. It is actually a certificate identifier. Judging from the data we currently have, private keys will get rotated every couple of months and this identifier tells you which certificate to use. This is the only part that is not encoded in any way.

Part 4: MRZ

MRZ is the machine readable zone on the back of the identification card which is printed in big monospace letters and has lots of angle brackets. The format is well documented and human readable, so I will not be covering it in this document. This part is base64 encoded.

Part 5: Name

Full name in uppercase letters separated by newlines, also base64 encoded.

Part 6: Image

Very low-res version of the photo on the card in the rather obscure JPEG2000 format and again base64 encoded. JPEG2000 is not the same as the well supported original JPEG standard and might require specialized software to view. Writing the bytestream to a file with a .jp2 extension seems to be all that's needed to view the content in those programs though.

API

Intercepting the web traffic by the app there were a few API endpoints of which only one was actually useful. I'm documenting them all for completeness though. The app always sets the x-api-key header to 1Rrt0JmIUyHM6ARj, although this does not seem to be required to access the data. The key is hardcoded and I am not aware of any others.

Example request:

curl -H "x-api-key: 1Rrt0JmIUyHM6ARj" https://api.check-at.at/api/v1/certificates

/api/v1/ready

I don't really know what the point of this is. It just returns a success value.

Full URL: https://api.check-at.at/api/v1/ready

Example response:

{"success": true}

/api/v1/certificates

This endpoint returns the certificate data used to verify the signatures. The example response only lists one certificate, but there are multiple.

Full URL: https://api.check-at.at/api/v1/certificates

[{
  "certificate_id": "A16ATS004008",
  "public_key": "-----BEGIN PUBLIC KEY-----\nMIIBMzCB7AYHKoZIzj0CATCB4AIBATAsBgcqhkjOPQEBAiEAqftX26Huqbw+ZgqQ\nnYONcm479iPVJiAoIBNIHR9uU3cwRAQgfVoJdfwsMFfu9nUwQXr/5/uAVcEm3Fxs\n6UpLRPMwtdkEICbcXGzpSktE8zC12bvXfL+VhBYpXPfhzmvM3Bj/jAe2BEEEi9Ku\nuct+V8ssS0gv/IG3r7neJ+HjvSPCOkRTvZrOMmJUfvg1w9rE/Zf4RhoUYR3JwndF\nEy3tjlRcHVTHLwRplwIhAKn7V9uh7qm8PmYKkJ2DjXGMOXqjtWGm95AeDoKXSFan\nAgEBA0IABIFUQPj5oSWqeV7HqNKmQaUwEmChzR02q6K9Gjcr6UPjUdZAxd/51L2b\nyb1n0kFQoLMwEZBcUaF7G2LSfgLw6k0=\n-----END PUBLIC KEY-----",
  "valid_until": "2031-08-15T11:10:40Z"
}]

/api/v1/documents

Returns some kind of document directory. At the time of writing only has one entry.

Full URL: https://api.check-at.at/api/v1/documents

[{
  "document_id": 1,
  "name": "Personalausweis",
  "steps_updated_at": "2021-08-17T15:52:09.908791Z"
}]

/api/v1/steps/1

Lists the steps to manually check the ID card by the person using the app. It's unclear why this is even loaded because the content is unlikely to change so rapidly that it would warrant building an API for it.

Full URL: https://api.check-at.at/api/v1/steps/1

No example provided because it would take up too much space.

Cryptography

The signature algorithm is ECDSA with SHA256. The certificates use a brainpoolP256r1 curve.

Key Format

The certificates API returns PEM encoded public keys. They are not proper certificate because they are not signed by any entity and do not contain any of the usual attributes like a common name or expiration date. A function made for loading public keys has to be used instead of one for certificates.

Another pitfall is that the curve of the keys is encoded explicitly. This means that in addition to the public or private bits they contain each of the parameters that make up an elliptic curve. Very few tools and libraries seem to be able to deal with this format and instead expected a "named" curve where the parameters are given by a standardized name like nistp256 or brainpoolP256r1.

OpenSSL can be used to convert between the two key types. The -param_enc parameter of the openssl ec utility defines which format will be used. Details can be found in the manpage. An example command is given below:

openssl ec -pubin -in key_explicit.pem -param_enc named_curve -pubout -out key_named.pem

Signed Data

An important part of verifying signatures is getting a reproducible representation of the data to be signed. In this case it is comprised of the items listed below concatenated in order without any separation.

  • The IV value with the hex values decoded to binary
  • The signature ID encoded as ASCII
  • A single line feed (\n or 0x0A)
  • The MRZ data as decoded from base64
  • The name data as decoded
  • The image data as decoded

For an example check the provided Python code.

Demo usage

At first the certificates have to be fetched from the API. They will be placed in the directory certs. Another directory certs_named will also be created to be used later.

python3 fetchcerts.py

The script will tell you to convert the explicit certificates to named ones using a command like this:

openssl ec -pubin -in certs/A16ATS004008.pem -param_enc named_curve -pubout -out certs_named/A16ATS004008.pem

Be aware that while fetching and converting the certificates is a separate step, it should be repeated regularly because new certificates will very likely be added with time.

Now to get the data to be verified scan the QR code on the ID card and copy it to a text file. Whitespace is irrelevant and does not need to be preserved. I have named my file qr_data.txt. It can now be decoded and verified.

python3 verifydata.py qt_data.txt

OpenSSL usage

OpenSSL can use the original certificates without conversion. To try it modify the example to write sign_data to a binary file. I'll call it sign_data.bin in this example. Then convert the signature to DER which can be done using the following code and write it also to a file.

import ecdsa.util
signature_r = int(signature[:64], 16)
signature_s = int(signature[64:], 16)
signature_der = ecdsa.util.sigencode_der(signature_r, signature_s, order=None)

Then openssl can be called to verify the signature:

openssl dgst -sha256 -verify certs/A16ATS004008.pem -signature signature_der.bin sign_data.bin

License

  • CC BY 4.0
Owner
Gabriel Huber
Gabriel Huber
Compare two CSV files for differences. Colorize the differences and align the columns.

pretty-csv-diff Compare two CSV files for differences. Colorize the differences and align the columns. Command-Line Example Command-Line Usage usage:

Devon 6 Dec 29, 2022
layout-parser 3.4k Dec 30, 2022
30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days

30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace.

Asabeneh 17.7k Jan 07, 2023
📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.

applied-ml Curated papers, articles, and blogs on data science & machine learning in production. ⚙️ Figuring out how to implement your ML project? Lea

Eugene Yan 22.1k Jan 03, 2023
The purpose of this project is to share knowledge on how awesome Streamlit is and can be

Awesome Streamlit The fastest way to build Awesome Tools and Apps! Powered by Python! The purpose of this project is to share knowledge on how Awesome

Marc Skov Madsen 1.5k Jan 07, 2023
An introduction course for Python provided by VetsInTech

Introduction to Python This is an introduction course for Python provided by VetsInTech. For every "boot camp", there usually is a pre-req, but becaus

Vets In Tech 2 Dec 02, 2021
A Python Package To Generate Strong Passwords For You in Your Projects.

shPassGenerator Version 1.0.6 Ready To Use Developed by Shervin Badanara (shervinbdndev) on Github Language and technologies used in This Project Work

Shervin 11 Dec 19, 2022
Python bindings to OpenSlide

OpenSlide Python OpenSlide Python is a Python interface to the OpenSlide library. OpenSlide is a C library that provides a simple interface for readin

OpenSlide 297 Dec 21, 2022
The OpenAPI Specification Repository

The OpenAPI Specification The OpenAPI Specification is a community-driven open specification within the OpenAPI Initiative, a Linux Foundation Collabo

OpenAPI Initiative 25.5k Dec 29, 2022
This repo contains everything you'll ever need to learn/revise python basics

Python Notes/cheat sheet Simplified notes to get your Python basics right Just compare code and output side by side and feel the rush of enlightenment

Hem 5 Oct 06, 2022
Numpy's Sphinx extensions

numpydoc -- Numpy's Sphinx extensions This package provides the numpydoc Sphinx extension for handling docstrings formatted according to the NumPy doc

NumPy 234 Dec 26, 2022
Python Advanced --- numpy, decorators, networking

Python Advanced --- numpy, decorators, networking (and more?) Hello everyone 👋 This is the project repo for the "Python Advanced - ..." introductory

Andreas Poehlmann 2 Nov 05, 2021
Your Project with Great Documentation.

Read Latest Documentation - Browse GitHub Code Repository The only thing worse than documentation never written, is documentation written but never di

Timothy Edmund Crosley 809 Dec 28, 2022
Python syntax highlighted Markdown doctest.

phmdoctest 1.3.0 Introduction Python syntax highlighted Markdown doctest Command line program and Python library to test Python syntax highlighted cod

Mark Taylor 16 Aug 09, 2022
Gtech μLearn Sample_bot

Ser_bot Gtech μLearn Sample_bot Do Greet a newly joined member in a channel (random message) While adding a reaction to a message send a message to a

Jerin Paul 1 Jan 19, 2022
A collection of lecture notes, drawings, flash cards, mind maps, scripts

Neuroanatomy A collection of lecture notes, drawings, flash cards, mind maps, scripts and other helpful resources for the course "Functional Organizat

Georg Reich 3 Sep 21, 2022
📖 Generate markdown API documentation from Google-style Python docstring. The lazy alternative to Sphinx.

lazydocs Generate markdown API documentation for Google-style Python docstring. Getting Started • Features • Documentation • Support • Contribution •

Machine Learning Tooling 118 Dec 31, 2022
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
Collection of Summer 2022 tech internships!

Collection of Summer 2022 tech internships!

Pitt Computer Science Club (CSC) 15.6k Jan 03, 2023
Explain yourself! Interrogate a codebase for docstring coverage.

interrogate: explain yourself Interrogate a codebase for docstring coverage. Why Do I Need This? interrogate checks your code base for missing docstri

Lynn Root 435 Dec 29, 2022