Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane.

Overview

Xanadu Quantum Codebook

The Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane. This repository contains all the source text and coding challenge templates in the Codebook; the Codebook itself is available at codebook.xanadu.ai.

Providing feedback and getting help

The Codebook is currently in the beta stage of development. If you find an error in the Codebook, something is not working as expected, or have other technical feedback, please open an issue in this repository.

If you are stuck on a coding exercise, or have questions about the content and material, please post a question on the PennyLane discussion forum under the "Codebook" category.

Codebook team

The Xanadu Quantum Codebook was written, developed, and reviewed by members of the Xanadu team. The current contents are the work of the following people:

Catalina Albornoz, Guillermo Alonso, Mikhail Andrenkov, Priya Angara*, Ali Asadi, Álvaro Ballon, Sanchit Bapat, Olivia Di Matteo, Paul Finlay, Alberto Fumagalli, Andrew Gardhouse, Natalie Girard, Ant Hayes, Josh Izaac, Timjan Kalajdzievski, Nathan Killoran, Jay Soni, David Wakeham*.

(* Funding support for our student authors was provided by the Mitacs Accelerate program.)

If you would like to acknowledge the Codebook in your work, please use the following format:

C. Albornoz, G. Alonso, M. Andrenkov, P. Angara, A. Asadi, A. Ballon, S. Bapat, O. Di Matteo, P. Finlay, A. Fumagalli, A. Gardhouse, N. Girard, A. Hayes, J. Izaac, T. Kalajdzievski, N. Killoran, J. Soni, D. Wakeham. (2021) Xanadu Quantum Codebook.

Comments
  • [BUG] Error in grader

    [BUG] Error in grader

    Node number

    Codercise I.14.2

    Expected behavior

    IMPLEMENT THE MULTIPLEXER
    IF STATE OF FIRST TWO QUBITS IS 01, APPLY X TO THIRD QUBIT

    qml.MultiControlledX(control_wires=[0,1], wires=2, control_values='01') The above code should result in the desired behaviour, that is, give the correct output.

    Actual behavior

    Incorrect: your circuit does not have the correct action on |01>.

    Is however, the error being raised!

    Additional information

    No response

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by p-j-r 5
  • [BUG] Finishing node backward will mark succeeding node incomplete

    [BUG] Finishing node backward will mark succeeding node incomplete

    Node number

    Node I

    Expected behavior

    When finishing lessons in Node A before Node I, Node A should still be marked as complete.

    Actual behavior

    Node A will get back to an incomplete state (white circle) when it was finishing before Node I.

    Additional information

    I finished Node A before Node I. Node I is marked as complete (green circle). However, Node A (which previously finished) is not anymore.

    I am not certain about other node (like if you do the lesson backward, etc.). You might have to check them as well.

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by rootEnginear 4
  • [BUG] Cant accept terms

    [BUG] Cant accept terms

    Node number

    T

    Expected behavior

    I scroll to the bottom, and then the accept terms button becomes active

    Actual behavior

    Accept terms never becomes active

    Additional information

    Tried with and without Ublock Origin enabled (Chrome/Windows)

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by 00alia00 3
  • Wrong solution Codercise I.7.3

    Wrong solution Codercise I.7.3

    Feature details

    In Codercise I.7.3, the solution accepted as correct seems to be the wrong one.

    In the explanation following the question, 2 solutions are presented as being the only possible ones, and the second one (HTTHTH) is indicated as the correct one. However, the submission for the previous question only accepts the first one (HTHTTH) as the right answer.

    I worked out the math, and can confirm that the second one (HTTHTH) is the right answer as indicated in the text but not in the accepted solution to the codercise.

    image

    Additional information

    No response

    opened by kmyali 2
  • [Bug] Error in P1.1 grader

    [Bug] Error in P1.1 grader

    Feature details

    As explained here, the grader is marking a wrong answer (Hadamard on wire 1) as correct while marking wrong the correct answer (Hadamard on wire 0).

    Additional information

    No response

    opened by CatalinaAlbornoz 2
  • Incorrect Action of RY on Computational Basis States in I.6

    Incorrect Action of RY on Computational Basis States in I.6

    Feature details

    Hi there,

    There is a small error in the left panel equation display of the action of $RY(\theta)$ on the computational basis states in I.6 (in the discussion after codercise I.6.3). The sign of the $\sin(\theta/2)$ terms is reversed.

    Note that the expressions for this are correct in the corresponding place in the right "textbook" panel (end of the solution to exercise I.6.3).

    Additional information

    No response

    opened by robertmoir 2
  • [EDIT] I1.10 Incorrect analytical expectation value

    [EDIT] I1.10 Incorrect analytical expectation value

    Feature details

    Solution to Exercise I.10.2.c is given as 3.022769, but using Wolfram Alpha to calculate the provided matrix multiplication suggests that the answer should be -0.302769 instead.

    Using Pennylane to measure

    dev = qml.device("default.qubit", wires=1)
        @qml.qnode(dev)
        def qf():
            qml.MottonenStatePreparation([4 / 5, -3 / 5 * np.e ** (1j * np.pi / 3)], 0)
            return qml.expval(qml.Hermitian(np.array([[1, -2 * 1j], [2 * 1j, 2]]), 0))
    print(qf())
    

    also yields -0.3027687752661218

    Additional information

    No response

    accepted 
    opened by paullin03 2
  • [BUG]

    [BUG]

    Node number

    I.7.3

    Expected behavior

    Not to accept my answer

    Actual behavior

    My answer HTHT was accepted.

    Additional information

    No response

    Source code

    dev = qml.device("default.qubit", wires=1)
    
    @qml.qnode(dev)
    def unitary_with_h_and_t():
        
        qml.Hadamard(wires = 0)
        qml.T(wires = 0)
        qml.Hadamard(wires = 0)
        qml.T(wires = 0)
        
        
    
        return qml.state()
    

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by Boniface316 2
  • [EDIT] Minor typo in codebook text, node G.4

    [EDIT] Minor typo in codebook text, node G.4

    Node number

    Node G.4, Exercise Exercise G.4.1

    Current content

    In the solution of Exercise G.4.1, item (a):

    The first term in the equation read $\left ( U \left | u\right \rangle \right )^\dagger \left | v\right \rangle$, but there's a $U$ missing, acting on $\left | v\right \rangle$

    Expected content

    The first term in the equation should be:

    $\left ( U \left | u\right \rangle \right )^\dagger U \left | v\right \rangle$

    Or even

    $\left ( U \left | u\right \rangle \right )^\dagger \left ( U \left | v\right \rangle \right )$

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by andre-juan 2
  • [EDIT] Add syntax of the required gate

    [EDIT] Add syntax of the required gate

    Node number

    Codercise I.13.4.

    Current content

    The question does not contain the actual syntax of the MultiControlledX gate.

    Expected content

    A tip/hint drop down which contains:

    qml.MultiControlledX(control_wires=[control_1, control_2], wires=target_wire, control_values=string_of_control_values)
    

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by ankit27kh 2
  • T-depth = 5 in Codercise I.5.4

    T-depth = 5 in Codercise I.5.4

    Node number

    Codercise I.5.4

    Current content

    The depth of the original circuit is 8, and there are 13 combined T and T† gates. The original T-depth is 6.

    Expected content

    The original T-depth should be 5 since the second qubit has a maximum of 5 T gates in a row.

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by SaashaJoshi 2
  • [BUG] in codercise I.1.2

    [BUG] in codercise I.1.2

    Node number

    Node I.1, codercises I.1.2

    Expected behavior

    Codercise I.1.2 should throw an error if user mistakenly submits the inner product <state_2 | state_1> instead of <state_1 | state_2>.

    Possible solution: Have grader use complex-valued states for which <state_1 | state_2> != <state_1 | state_1>

    Actual behavior

    Grader passes even if user submits answer for <state_2 | state_1>.

    Additional information

    For example, the grader passes if user inputs:

        ##################
        # YOUR CODE HERE #
        ##################
    
        # COMPUTE AND RETURN THE INNER PRODUCT
    
        return  np.vdot(state_2,state_1)
    

    or

        ##################
        # YOUR CODE HERE #
        ##################
    
        # COMPUTE AND RETURN THE INNER PRODUCT
    
        return  np.dot(state_1,np.conjugate(state_2))
    

    Source code

    No response

    Tracebacks

    No response

    Check other issues

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by diemilio 1
  • [BUG] in codercise I.1.1

    [BUG] in codercise I.1.1

    Node number

    Node I.1, codercises I.1.1

    Expected behavior

    Codercise I.1.1 should throw an error if user normalizes state without taking the norm of the complex amplitudes.

    Possible solution: Have grader use complex-valued variables to check answers.

    Actual behavior

    Grader passes even if normalization constant is not calculated correctly (a^2 + b^2 = 1 instead of |a'|^2 + |b'|^2 = 1`).

    Additional information

    For example, the grader passes if user inputs:

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        norm_psi = np.array([alpha,beta])/np.sqrt(alpha**2+beta**2)
        # RETURN A VECTOR
        return norm_psi
    

    or

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        psi = np.array([alpha,beta])
        norm_psi = psi/np.sqrt(np.dot(psi,psi))
        # RETURN A VECTOR
        return norm_psi
    

    The correct implementations should be:

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        norm_psi = np.array([alpha,beta])/np.sqrt(abs(alpha)**2+abs(beta)**2)
        # RETURN A VECTOR
        return norm_psi
    

    or

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        psi = np.array([alpha,beta])
        norm_psi = psi/np.sqrt(np.dot(psi,psi))
        # RETURN A VECTOR
        return norm_psi
    

    Source code

    No response

    Tracebacks

    No response

    Check other issues

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by diemilio 1
  • Typo in P3.2

    Typo in P3.2

    Feature details

    P.3.2 seems to have a typo (as detailed here) in the explanation of the desired output.

    Current: “”" Returns: [(float, float)]: a list of phase windows for 1 to 9 estimation wires “”"

    Fixed: “”" Returns: [(float, float)]: a list of phase windows for “2” to 9 estimation wires “”"

    Additional information

    No response

    opened by CatalinaAlbornoz 0
  • [BUG] in codercise P3.1

    [BUG] in codercise P3.1

    Feature details

    As detailed here, the grader is taking bound 1 and bound 2 in the reverse order. We should either change the grader, the description of the bounds or the order in which they are returned.

    Additional information

    No response

    opened by CatalinaAlbornoz 0
  • New Feature Request

    New Feature Request

    Feature details

    Is there a way I can access any code that I have done in one desktop to a laptop without having to restart my laptop?

    Additional information

    No response

    opened by erdabravest2001 1
Releases(v0.1.0)
Owner
Xanadu
Quantum Computing Powered by Light
Xanadu
100 Days of Code Learning program to keep a habit of coding daily and learn things at your own pace with help from our remote community.

100 Days of Code Learning program to keep a habit of coding daily and learn things at your own pace with help from our remote community.

Git Commit Show by Invide 41 Dec 30, 2022
:blue_book: Automatic documentation from sources, for MkDocs.

mkdocstrings Automatic documentation from sources, for MkDocs. Features Python handler features Requirements Installation Quick usage Features Languag

Timothée Mazzucotelli 1.1k Dec 31, 2022
A powerful Sphinx changelog-generating extension.

What is Releases? Releases is a Python (2.7, 3.4+) compatible Sphinx (1.8+) extension designed to help you keep a source control friendly, merge frien

Jeff Forcier 166 Dec 29, 2022
Hasköy is an open-source variable sans-serif typeface family

Hasköy Hasköy is an open-source variable sans-serif typeface family. Designed with powerful opentype features and each weight includes latin-extended

67 Jan 04, 2023
The blazing-fast Discord bot.

Wavy Wavy is an open-source multipurpose Discord bot built with pycord. Wavy is still in development, so use it at your own risk. Tools and services u

Wavy 7 Dec 27, 2022
Soccerdata - Efficiently scrape soccer data from various sources

SoccerData is a collection of wrappers over soccer data from Club Elo, ESPN, FBr

Pieter Robberechts 195 Jan 04, 2023
Pyoccur - Python package to operate on occurrences (duplicates) of elements in lists

pyoccur Python Occurrence Operations on Lists About Package A simple python package with 3 functions has_dup() get_dup() remove_dup() Currently the du

Ahamed Musthafa 6 Jan 07, 2023
Python syntax highlighted Markdown doctest.

phmdoctest 1.3.0 Introduction Python syntax highlighted Markdown doctest Command line program and Python library to test Python syntax highlighted cod

Mark Taylor 16 Aug 09, 2022
Python Deep Dive Course - Accompanying Materials

Python Deep Dive Various Jupyter notebooks and Python sources associated with my Udemy Python 3 Deep Dive course series: Part 1: Mainly functional pro

Fred Baptiste 1.1k Dec 30, 2022
Uses diff command to compare expected output with student's submission output

AUTOGRADER for GRADESCOPE using diff with partial grading Description: Uses diff command to compare expected output with student's submission output U

2 Jan 11, 2022
💯 Coolest snippets

nvim-snippets This was originally included in my personal Neovim setup, but I didn't like having all the snippets there so I decided to have them sepa

Eliaz Bobadilla 6 Aug 31, 2022
swagger-codegen contains a template-driven engine to generate documentation, API clients and server stubs in different languages by parsing your OpenAPI / Swagger definition.

Master (2.4.25-SNAPSHOT): 3.0.31-SNAPSHOT: Maven Central ⭐ ⭐ ⭐ If you would like to contribute, please refer to guidelines and a list of open tasks. ⭐

Swagger 15.2k Dec 31, 2022
🐱‍🏍 A curated list of awesome things related to Hugo themes.

awesome-hugo-themes Automated deployment @ 2021-10-12 06:24:07 Asia/Shanghai &sorted=updated Theme Author License GitHub Stars Updated Blonde wamo MIT

13 Dec 12, 2022
🌱 Complete API wrapper of Seedr.cc

Python API Wrapper of Seedr.cc Table of Contents Installation How I got the API endpoints? Start Guide Getting Token Logging with Username and Passwor

Hemanta Pokharel 43 Dec 26, 2022
A tutorial for people to run synthetic data replica's from source healthcare datasets

Synthetic-Data-Replica-for-Healthcare Description What is this? A tailored hands-on tutorial showing how to use Python to create synthetic data replic

11 Mar 22, 2022
Source Code for 'Practical Python Projects' (video) by Sunil Gupta

Apress Source Code This repository accompanies %Practical Python Projects by Sunil Gupta (Apress, 2021). Download the files as a zip using the green b

Apress 2 Jun 01, 2022
A Python Package To Generate Strong Passwords For You in Your Projects.

shPassGenerator Version 1.0.6 Ready To Use Developed by Shervin Badanara (shervinbdndev) on Github Language and technologies used in This Project Work

Shervin 11 Dec 19, 2022
The source code that powers readthedocs.org

Welcome to Read the Docs Purpose Read the Docs hosts documentation for the open source community. It supports Sphinx docs written with reStructuredTex

Read the Docs 7.4k Dec 25, 2022
Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD.

freecad-pyoptools Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD. Requirements It req

Combustión Ingenieros SAS 12 Nov 16, 2022
Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

A 186 Dec 30, 2022