Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program

Overview

Planning Algorithms in AI and Robotics course T2 2021-22

The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2, 2021-2022. About us: we are the Mobile robotics Lab. at Skoltech

This repository includes all material used during the course: Class notes, unedited videos of the lectures and problem sets.

  • Instructor: Gonzalo Ferrer
  • Teaching Assistant: Aleksandr Gamaiunov
  • Teaching Assistant: Timur Akhtyamov

Lectures at the YouTube channel

Problem Sets

Deadline dates for submitting problem sets, in the folder PS*:

  • PS1: Discrete planning (14-November-2021)
  • PS2: Sampling-based planning (21-November-2021)
  • PS3: Value Iteration (28-November-2021)
  • PS4: Decision Making (5-December-2021)

Final Course Project

The final project could be either of the following, where in each case the topic should be closely related to the course:

  • An algorithmic or theoretical contribution that extends the current state-of-the-art.
  • An implementation of a state-of-the-art algorithm. Ideally, the project covers interesting new ground and might be the basis for a future conference paper submission or product.

You are encouraged to come up with your own project ideas, yet make sure to pass them by Prof. Ferrer before you submit your abstract

  • Ideally 3-5 students per project (the scope of multi-body projects must be commensurate).
  • Proposal: 1 page description of project + goals for milestone. This document describes the initial proposal and viability of the project.
  • Presentations: The presentation needs to be 12 minutes long; There will be a maximum of 3 minutes for questions after the presentation.If your presentation lasts more than 12 minutes, it will be stopped. So please make sure the presentation does not go over.
  • Paper: This should be a IEEE conference style paper, i.e., focus on the problem setting, why it matters and what is interesting/novel about it, your approach, your results, analysis of results, limitations, future directions.Cite and briefly survey prior work as appropriate but do not re-write prior work when not directly relevant to understand your approach.
  • Evaluation: Each team will evaluate their colleagues’ presentations.Templates will be provided the presentation day. All these points will be summed for a final evaluation (30% of the total grade).

Reference

@Misc{ferrer2021,
  author = {Gonzalo Ferrer},
  title = {Lectures on Planning Algorithms in AI and Robotics},
  howpublished = {\url{https://github.com/MobileRoboticsSkoltech/Planning-Algorithms-T2-2021-22}},
  year = {2021}
}
Owner
Mobile Robotics Lab. at Skoltech
Mobile Robotics Lab. at Skoltech
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
🧬 Training the car to do self-parking using a genetic algorithm

🧬 Training the car to do self-parking using a genetic algorithm

Oleksii Trekhleb 652 Jan 03, 2023
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
All algorithms implemented in Python for education

The Algorithms - Python All algorithms implemented in Python - for education Implementations are for learning purposes only. As they may be less effic

1 Oct 20, 2021
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
This is a demo for AAD algorithm.

Asynchronous-Anisotropic-Diffusion-Algorithm This is a demo for AAD algorithm. The subroutine of the anisotropic diffusion algorithm is modified from

3 Mar 21, 2022
A simple library for implementing common design patterns.

PyPattyrn from pypattyrn.creational.singleton import Singleton class DummyClass(object, metaclass=Singleton): # DummyClass is now a Singleton!

1.7k Jan 01, 2023
🧬 Performant Evolutionary Algorithms For Python with Ray support

🧬 Performant Evolutionary Algorithms For Python with Ray support

Nathan 49 Oct 20, 2022
There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

1 Nov 19, 2021
Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors.

RiskyPortfolioGenerator Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors. Working in a group, we crea

Victoria Zhao 2 Jan 13, 2022
A command line tool for memorizing algorithms in Python by typing them.

Algo Drills A command line tool for memorizing algorithms in Python by typing them. In alpha and things will change. How it works Type out an algorith

Travis Jungroth 43 Dec 02, 2022
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
Gnat - GNAT is NOT Algorithmic Trading

GNAT GNAT is NOT Algorithmic Trading! GNAT is a financial tool with two goals in

Sher Shah 2 Jan 09, 2022
Multiple Imputation with Random Forests in Python

miceforest: Fast, Memory Efficient Imputation with lightgbm Fast, memory efficient Multiple Imputation by Chained Equations (MICE) with lightgbm. The

Samuel Wilson 202 Dec 31, 2022
Sign data using symmetric-key algorithm encryption.

Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algori

Artur Barseghyan 39 Jun 10, 2022
Sorting Algorithm Visualiser using pygame

SortingVisualiser Sorting Algorithm Visualiser using pygame Features Visualisation of some traditional sorting algorithms like quicksort and bubblesor

4 Sep 05, 2021
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks

aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat

3 Oct 22, 2021
sudoku solver using CSP forward-tracking algorithms.

Sudoku sudoku solver using CSP forward-tracking algorithms. Description Sudoku is a logic-based game that consists of 9 3x3 grids that create one larg

Cindy 0 Dec 27, 2021
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021