Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Overview

Distributed Grid Descent

An implementation of Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control as described in Appendix B of Working Memory Graphs [Loynd et al., 2019].

Note: This project is a work in progress. Please contact me if you like to contribute and help to develop a fully fledged python library out of it.

Usage

import numpy as np
from dgd import DistributedGridDescent

model = ... # model wrapper
data = {
    "train_data": ...
}

param_grid = {
    "learning_rate":[3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5],
    "optimizer":["adam", "rmsprop"],
    "lr_annealing":[False, 0.95, 0.99],
    "batch_size":[32, 64, 128, 256, 1024],
    "num_linear_layers":[1, 2, 4, 8, 16],
    "num_neurons":[512, 256, 128, 64, 32, 16],
    "dropout":[0.0, 0.1, 0.3, 0.5],
    "l2":[0.0, 0.01, 0.1]
}

dgd = DistributedGridDescent(model, param_grid, metric=np.mean, n_jobs=-1)
dgd.run(data)

print(dgd.best_params_)
df = pd.DataFrame(dgd.results_).set_index("ID").sort_values(by=["metric"],ascending=False)

Examples and Tutorials

See sklearn_example.py, pytorch_example.py, rosenbrock_example.py and tensorflow_example.py in the examples folder for examples of basic usage of dgd.
See rosenbrock_server_example.py for an example of distributed usage.

Strong and weak scaling analysis

scaling_analysis

Algorithm

Input: Set of hyperparameters H, each having a discrete, ordered set of possible values.  
Input: Maximum number of training steps N per run.  
repeat  
    Download any new results.  
    if no results so far then
        Choose a random configuration C from the grid defined by H.
    else
        Identify the run set S with the highest metric.
        Initialize neighborhood B to contain only S.
        Expand B by adding all possible sets whose configurations differ from that of S by one step in exactly one hyperparameter setting.
        Calculate a ceiling M = Count(B) + 1.
        Weight each run set x in B M - Count(x).
        Sample a random run set S' from B according to run set weights.
        Choose configuration C from S'.
    end if
    Perform one training run of N steps using C.
    Calculate the runs Metric.
    Log the result on shared storage.
until terminated by user.

See Appendix B of Loynd et al., 2019 for details.

Owner
Martin
Machine Learning Engineer at heart MSc Student in Computational Science & Engineering :computer: :books: :wrench: @ ETH Zürich :switzerland:
Martin
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
Infomap is a network clustering algorithm based on the Map equation.

Infomap Infomap is a network clustering algorithm based on the Map equation. For detailed documentation, see mapequation.org/infomap. For a list of re

347 Dec 23, 2022
Gnat - GNAT is NOT Algorithmic Trading

GNAT GNAT is NOT Algorithmic Trading! GNAT is a financial tool with two goals in

Sher Shah 2 Jan 09, 2022
Apriori - An algorithm for frequent item set mining and association rule learning over relational databases

Apriori Apriori is an algorithm for frequent item set mining and association rul

Mohammad Nazari 8 Jan 10, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

19 Oct 11, 2022
QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive parallelism

QDax: Accelerated Quality-Diversity QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive paralleli

Adaptive and Intelligent Robotics Lab 183 Dec 30, 2022
Algorithm and Structured Programming course project for the first semester of the Internet Systems course at IFPB

Algorithm and Structured Programming course project for the first semester of the Internet Systems course at IFPB

Gabriel Macaúbas 3 May 21, 2022
Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms

Differential_Privacy_CPS Python implementation of the research paper Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms Re

Shubhesh Anand 2 Dec 14, 2022
Implementation of core NuPIC algorithms in C++

NuPIC Core This repository contains the C++ source code for the Numenta Platform for Intelligent Computing (NuPIC)

Numenta 270 Nov 19, 2022
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
Provide player's names and mmr and generate mathematically balanced teams

Lollo's matchmaking algorithm Provide player's names and mmr and generate mathematically balanced teams How to use Fill the input.json file with your

4 Aug 04, 2022
A Python library for simulating finite automata, pushdown automata, and Turing machines

Automata Copyright 2016-2021 Caleb Evans Released under the MIT license Automata is a Python 3 library which implements the structures and algorithms

Caleb Evans 219 Dec 12, 2022
Code for generating alloy / disordered structures through the special quasirandom structure (SQS) algorithm

Code for generating alloy / disordered structures through the special quasirandom structure (SQS) algorithm

Bruno Focassio 1 Nov 10, 2021
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Jessica Jolly 3 Jul 28, 2022
Implementation of Apriori Algorithm for Association Analysis

Implementation of Apriori Algorithm for Association Analysis

3 Nov 14, 2021
Optimal skincare partition finder using graph theory

Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl

Jason Nguyen 1 Nov 22, 2021
Dynamic Programming-Join Optimization Algorithm

DP-JOA Join optimization is the process of optimizing the joining, or combining, of two or more tables in a database. Here is a simple join optimizati

Haoze Zhou 3 Feb 03, 2022
Algorithms for calibrating power grid distribution system models

Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the

Sandia National Laboratories 2 Oct 31, 2022
Sorting-Algorithms - All information about sorting algorithm you need and you can visualize the code tracer

Sorting-Algorithms - All information about sorting algorithm you need and you can visualize the code tracer

Ahmed Hossam 15 Oct 16, 2022
A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches

A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches. This module only provides the algorithm that infers a channel mask from some spectral sta

Vincent Morello 6 Nov 29, 2022