Contextual speed detection for python

Overview

Speed Prediction using Optical Flow and 2D CNN

About the challenge:

Comma.AI Speed Challenge This challenge was developed by Comma.AI to predict the speed of a car from a video.

Pipeline

Model

Tensorflow Version: 2.2.0

Steps for implementing speed estimation:

  1. Save the images from the train.mp4 and test.mp4 video using DatasetConverter.py.
  2. Convert the images from the videos, computer dense optical flow on the image sequence and save optical flow images using VideoToOpticalFlowImage.py.
  3. Train the network below on optical flow images and save the best performing model using custom callback.
  4. Use the saved model on the testing dataset using UseModel.py.

Optical Flow

Optical flow is computed on two adjacent image frames in a video, converted it to grayscal and applying cv2.calcOpticalFlowFarneback() which outputs two matrices of same shape as compared to the input shape. Each pixel of the output images denotes the change in its position and speed respectively with respect to the previous image frame. For visualization and training, the output images are combined into single HSV color channel based image.

Data Augmentation

Every single images is flipped horizontally having the target value same as the images from which it is derived. This data augmentation played significant role in reducing validation loss.

Model

The following model is a 2D CNN based model made to be used on optical flow images. As compared to a 3D CNN based model trained on images from video, using optical flow with 2D CNN is faster to train and has lower MSE loss.

Training:

Trained the 2D CNN for 150 epochs to get a validation MSE loss of 0.18 and training MSE loss of 0.05

Output:

This gif below has the prediction vs ground truth for the images on which the model is trained:

Train Prediction

This gif is the prediction on the test images:

Test Prediction

Learning:

  1. Image augmentation significantly improves the speed estimation of the model
  2. Writing custom data generators for reading batches of images and ground truth
  3. 2D CNN with optical flow performs better than 3D CNN in terms of training time and accuracy

Reference:

  1. speed-estimation-of-car-with-optical-flow
  2. speed-prediction-challenge
Owner
Mahimana Bhatt
Solving problems through code
Mahimana Bhatt
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
Drowsiness Detection and Alert System

A countless number of people drive on the highway day and night. Taxi drivers, bus drivers, truck drivers, and people traveling long-distance suffer from lack of sleep.

Astitva Veer Garg 4 Aug 01, 2022
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma

<a href=[email protected]"> 354 Jan 01, 2023
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up

Harald Scheidl 1.5k Jan 07, 2023
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
Deep Learning Chinese Word Segment

引用 本项目模型BiLSTM+CRF参考论文:http://www.aclweb.org/anthology/N16-1030 ,IDCNN+CRF参考论文:https://arxiv.org/abs/1702.02098 构建 安装好bazel代码构建工具,安装好tensorflow(目前本项目需

2.1k Dec 23, 2022
Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

fernanda rodríguez 85 Jan 02, 2023
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
Text to QR-CODE

QR CODE GENERATO USING PYTHON Author : RAFIK BOUDALIA. Installation Use the package manager pip to install foobar. pip install pyqrcode Usage from tki

Rafik Boudalia 2 Oct 13, 2021
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023