NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

Overview

NAS-FCOS: Fast Neural Architecture Search for Object Detection

This project hosts the train and inference code with pretrained model for implementing the NAS-FCOS algorithm for object detection, as presented in our paper:

NAS-FCOS: Fast Neural Architecture Search for Object Detection;
Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen;
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2020.

The full paper is available at: NAS-FCOS Paper.

Updates

  • News: Accepted by CVPR 2020. (24/02/2020)
  • Upload solver module to support self training. (06/02/2020)
  • Support RetinaNet detector in NAS module (pretrained model coming soon). (06/02/2020)
  • Update NAS head module, config files and pretrained model links. (07/01/2020)

Required hardware

We use 4 Nvidia V100 GPUs.

Installation

This NAS-FCOS implementation is based on maskrcnn-benchmark. Therefore the installation is the same as original maskrcnn-benchmark.

Please check INSTALL.md for installation instructions. You may also want to see the original README.md of maskrcnn-benchmark.

Train

The train command line on coco train:

python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --master_port=1213 \
    tools/train_net.py --config-file "configs/search/R_50_NAS_retinanet.yaml"

Inference

The inference command line on coco minival split:

python -m torch.distributed.launch \
    --nproc_per_node=1 \
    tools/test_net.py --config-file "configs/search/R_50_NAS_densebox.yaml"

Please note that:

  1. If your model's name is different, please replace models/R-50-NAS.pth with your own.
  2. If you enounter out-of-memory error, please try to reduce TEST.IMS_PER_BATCH to 1.
  3. If you want to evaluate a different model, please change --config-file to its config file (in configs/search) and MODEL.WEIGHT to its weights file.

For your convenience, we provide the following trained models (more models are coming soon).

Model Multi-scale training AP (minival) AP (test-dev) Link Fetch Code
Mobile_NAS No 32.6 33.1 download 3dm9
Mobile_NAS_head No 34.4 34.7 download -
R_50_NAS No 38.5 38.9 download f88u
R_50_NAS_head No 39.5 39.8 download -
R_101_NAS Yes 42.1 42.5 download euuz
R_101_NAS_head Yes 42.8 43.0 download -
R_101_X_32x8d_NAS Yes 43.4 43.7 download 4cci

Attention: If the above model link cannot be downloaded normally, please refer to the link below. Mobile_NAS, Mobile_NAS_head, R_50_NAS, R_50_NAS_head, R_101_NAS, R_101_NAS_head R_101_X_32x8d_NAS

All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@InProceedings{Wang_2020_CVPR,
    author = {Wang, Ning and Gao, Yang and Chen, Hao and Wang, Peng and Tian, Zhi and Shen, Chunhua and Zhang, Yanning},
    title = {NAS-FCOS: Fast Neural Architecture Search for Object Detection},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact the authors.

Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022