DNA sequence classification by Deep Neural Network

Overview

DNA sequence classification by Deep Neural Network: Project Overview

  • worked on the DNA sequence classification problem where the input is the DNA sequence and the output class states whether a certain histone protein is present on the sequence or not.
  • used one of the datasets from 12 different datasets that we have collected. The name of the dataset is H3K4me2
  • To represent a sequence, we have utilized k-mer representation
  • For the sequence embedding we have used one-hot encoding
  • Different word embedding models: Word2Vec, BERT, Keras Embedding layer, Bi-LSTM, and CNN

Bioinformatics Project - B.Sc. in Computer Science and Engineering (CSE)

Created by: - Md. Tarek Hasan, Mohammed Jawwadul Islam, Md Fahad Al Rafi, Arifa Akter, Sumayra Islam

Date of Completion: - Fall 2021 Trimester (Nov 2021 - Jan 2022)

Linkedin of Jawwadul

Linkedin of Tarek

Linkedin of Fahad

Linkedin of Arifa

Linkedin of Sumayra

Code and Resources Used

  • Python Version: 3.7.11
  • Packages: numpy, pandas, keras, tensorflow, sklearn
  • Dataset from: Nguyen who is one the authors of the paper titled “DNA sequence classification by convolutional neural network”

Features of the Dataset

DNA sequences wrapped around histone proteins are the subject of datasets

  • For our experiment, we selected one of the datasets entitled H3K4me2.
  • H3K4me2 has 30683 DNA sequences whose 18143 samples fall under the positive class, the rest of the samples fall under the negative class, and it makes the problem binary class classification.
  • The ratio of the positive-negative class is around (59:41)%.
  • The class label represents the presence of H3K4me2 histone proteins in the sequences.
  • The base length of the sequences is 500.

Data Preprocessing

  • The datasets were gathered in.txt format. We discovered that the dataset contains id, sequence, and class label during the Exploratory Data Analysis phase of our work.
  • We dropped the id column from the dataset because it is the only trait that all of the samples share.
  • Except for two samples, H3K4me2 includes 36799 DNA sequences, the majority of which are 500 bases long. Those two sequences have lengths of 310 and 290, respectively. To begin, we employed the zero-padding strategy to tackle the problem. However, because there are only two examples of varying lengths, we dropped those two samples from the dataset later for experiments, as these samples may cause noise.
  • we have used the K-mer sequence representation technique to represent a DNA sequence, we have used the K-mer sequence representation technique
  • For sequence emdedding after applying the 3-mer representation technique, we have experimented using different embedding techniques. The first three embedding methods are named SequenceEmbedding1D, SequenceEmbedding2D, SequenceEmbedding2D_V2, Word2Vec and BERT.
    • SequenceEmbedding1D is the one-dimensional representation of a single DNA sequence which is basically the one-hot encoding.
    • SequenceEmbedding2D is the two-dimensional representation of a single DNA sequence where the first row is the one-hot encoding of a sequence after applying 3-mer representation. The second row is the one-hot encoding of a left-rotated sequence after applying 3-mer representation.
    • the third row of SequenceEmbedding2D_V2 is the one-hot encoding of a right-rotated sequence after applying 3-mer representation.
    • Word2Vec and BERT are the word embedding techniques for language modeling.

Deep Learning Models

After the completion of sequence embedding, we have used deep learning models for the classification task. We have used two different deep learning models for this purpose, one is Convolutional Neural Network (CNN) and the other is Bidirectional Long Short-Term Memory (Bi-LSTM).

Experimental Analysis

After the data cleaning phase, we had 36797 samples. We have used 80% of the whole dataset for training and the rest of the samples for testing. The dataset has been split using train_test_split from sklearn.model_selection stratifying by the class label. We have utilized 10% of the training data for validation purposes. For the first five experiments we have used batch training as it was throwing an exception of resource exhaustion.

The evaluation metrics we used for our experiments are accuracy, precision, recall, f1-score, and Matthews Correlation Coefficient (MCC) score. The minimum value of accuracy, precision, recall, f1-score can be 0 and the maximum value can be 1. The minimum value of the MCC score can be -1 and the maximum value can be 1.

image

Discussion

MCC score 0 indicates the model's randomized predictions. The recall score indicates how well the classifier can find all positive samples. We can say that the model's ability to classify all positive samples has been at an all-time high over the last five experiments. The highest MCC score we received was 0.1573, indicating that the model is very near to predicting in a randomized approach. We attain a maximum accuracy of 60.27%, which is much lower than the state-of-the-art result of 71.77%. To improve the score, we need to emphasize more on the sequence embedding approach. Furthermore, we can experiment with various deep learning techniques.

Owner
Mohammed Jawwadul Islam Fida
CSE student. Founding Vice President of Students' International Affairs Society at CIAC, UIU
Mohammed Jawwadul Islam Fida
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022