DNA sequence classification by Deep Neural Network

Overview

DNA sequence classification by Deep Neural Network: Project Overview

  • worked on the DNA sequence classification problem where the input is the DNA sequence and the output class states whether a certain histone protein is present on the sequence or not.
  • used one of the datasets from 12 different datasets that we have collected. The name of the dataset is H3K4me2
  • To represent a sequence, we have utilized k-mer representation
  • For the sequence embedding we have used one-hot encoding
  • Different word embedding models: Word2Vec, BERT, Keras Embedding layer, Bi-LSTM, and CNN

Bioinformatics Project - B.Sc. in Computer Science and Engineering (CSE)

Created by: - Md. Tarek Hasan, Mohammed Jawwadul Islam, Md Fahad Al Rafi, Arifa Akter, Sumayra Islam

Date of Completion: - Fall 2021 Trimester (Nov 2021 - Jan 2022)

Linkedin of Jawwadul

Linkedin of Tarek

Linkedin of Fahad

Linkedin of Arifa

Linkedin of Sumayra

Code and Resources Used

  • Python Version: 3.7.11
  • Packages: numpy, pandas, keras, tensorflow, sklearn
  • Dataset from: Nguyen who is one the authors of the paper titled “DNA sequence classification by convolutional neural network”

Features of the Dataset

DNA sequences wrapped around histone proteins are the subject of datasets

  • For our experiment, we selected one of the datasets entitled H3K4me2.
  • H3K4me2 has 30683 DNA sequences whose 18143 samples fall under the positive class, the rest of the samples fall under the negative class, and it makes the problem binary class classification.
  • The ratio of the positive-negative class is around (59:41)%.
  • The class label represents the presence of H3K4me2 histone proteins in the sequences.
  • The base length of the sequences is 500.

Data Preprocessing

  • The datasets were gathered in.txt format. We discovered that the dataset contains id, sequence, and class label during the Exploratory Data Analysis phase of our work.
  • We dropped the id column from the dataset because it is the only trait that all of the samples share.
  • Except for two samples, H3K4me2 includes 36799 DNA sequences, the majority of which are 500 bases long. Those two sequences have lengths of 310 and 290, respectively. To begin, we employed the zero-padding strategy to tackle the problem. However, because there are only two examples of varying lengths, we dropped those two samples from the dataset later for experiments, as these samples may cause noise.
  • we have used the K-mer sequence representation technique to represent a DNA sequence, we have used the K-mer sequence representation technique
  • For sequence emdedding after applying the 3-mer representation technique, we have experimented using different embedding techniques. The first three embedding methods are named SequenceEmbedding1D, SequenceEmbedding2D, SequenceEmbedding2D_V2, Word2Vec and BERT.
    • SequenceEmbedding1D is the one-dimensional representation of a single DNA sequence which is basically the one-hot encoding.
    • SequenceEmbedding2D is the two-dimensional representation of a single DNA sequence where the first row is the one-hot encoding of a sequence after applying 3-mer representation. The second row is the one-hot encoding of a left-rotated sequence after applying 3-mer representation.
    • the third row of SequenceEmbedding2D_V2 is the one-hot encoding of a right-rotated sequence after applying 3-mer representation.
    • Word2Vec and BERT are the word embedding techniques for language modeling.

Deep Learning Models

After the completion of sequence embedding, we have used deep learning models for the classification task. We have used two different deep learning models for this purpose, one is Convolutional Neural Network (CNN) and the other is Bidirectional Long Short-Term Memory (Bi-LSTM).

Experimental Analysis

After the data cleaning phase, we had 36797 samples. We have used 80% of the whole dataset for training and the rest of the samples for testing. The dataset has been split using train_test_split from sklearn.model_selection stratifying by the class label. We have utilized 10% of the training data for validation purposes. For the first five experiments we have used batch training as it was throwing an exception of resource exhaustion.

The evaluation metrics we used for our experiments are accuracy, precision, recall, f1-score, and Matthews Correlation Coefficient (MCC) score. The minimum value of accuracy, precision, recall, f1-score can be 0 and the maximum value can be 1. The minimum value of the MCC score can be -1 and the maximum value can be 1.

image

Discussion

MCC score 0 indicates the model's randomized predictions. The recall score indicates how well the classifier can find all positive samples. We can say that the model's ability to classify all positive samples has been at an all-time high over the last five experiments. The highest MCC score we received was 0.1573, indicating that the model is very near to predicting in a randomized approach. We attain a maximum accuracy of 60.27%, which is much lower than the state-of-the-art result of 71.77%. To improve the score, we need to emphasize more on the sequence embedding approach. Furthermore, we can experiment with various deep learning techniques.

Owner
Mohammed Jawwadul Islam Fida
CSE student. Founding Vice President of Students' International Affairs Society at CIAC, UIU
Mohammed Jawwadul Islam Fida
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022