[email protected] Reverb Database. | PythonRepo" /> [email protected] Reverb Database. | PythonRepo">

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Overview

Add_noise_and_rir_to_speech

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Noise and RIR dataset description:

  • BUT [email protected] Reverb Database:

    The database is being built with respect to collect a large number of various Room Impulse Responses, Room environmental noises (or "silences"), Retransmitted speech (for ASR and SID testing), and meta-data (positions of microphones, speakers etc.).

    The goal is to provide speech community with a dataset for data enhancement and distant microphone or microphone array experiments in ASR and SID.

    In this codebase, we only use the RIR data, which is used to synthesize far-field speech, the composition of the RIR dataset and citation details are as follows.

    Room Name Room Type Size (length, depth, height) (m) (microphone_num x loudspeaker_num)
    Q301 Office 10.7x6.9x2.6 31 x 3
    L207 Office 4.6x6.9x3.1 31 x 6
    L212 Office 7.5x4.6x3.1 31 x 5
    L227 Stairs 6.2x2.6x14.2 31 x 5
    R112 Hotel room 4.4x2.8x2.6 31 x 5
    CR2 Conference room 28.2x11.1x3.3 31 x 4
    E112 Lecture room 11.5x20.1x4.8 31 x 2
    D105 Lecture room 17.2x22.8x6.9 31 x 6
    C236 Meeting room 7.0x4.1x3.6 31 x 10
    @ARTICLE{8717722,
             author={Szöke, Igor and Skácel, Miroslav and Mošner, Ladislav and Paliesek, Jakub and Černocký, Jan},
             journal={IEEE Journal of Selected Topics in Signal Processing}, 
             title={Building and evaluation of a real room impulse response dataset}, 
             year={2019},
             volume={13},
             number={4},
             pages={863-876},
             doi={10.1109/JSTSP.2019.2917582}
     }
    
  • MUSAN database:

    The database consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises and we only use the noise data in this database. Citation details are as follows.

    @misc{snyder2015musan,
          title={MUSAN: A Music, Speech, and Noise Corpus}, 
          author={David Snyder and Guoguo Chen and Daniel Povey},
          year={2015},
          eprint={1510.08484},
          archivePrefix={arXiv},
          primaryClass={cs.SD}
    }
    

Before using the data-processing code:

  • If you do not want the original dataset to be overwritten, please download the dataset again for use

  • You need to create three files: 'training_list.txt', 'validation_list.txt', 'testing_list.txt', based on your training, validation and test data file paths respectively, and ensure the audio in the file paths can be read and written.

  • The content of the aforementioned '*_list.txt' files are in the following form:

    *_list.txt
    	/../...../*.wav
    	/../...../*.wav
    	/../...../*.wav
    

Instruction for using the following data-processing code:

  1. mix_cleanaudio_with_rir_offline.py: Generate far-field speech offline

    • two parameters are needed:

      • --data_root: the data path which you want to download and store the RIR dataset in.
      • --clean_data_list_path: the path of the folder in which 'training_list.txt', 'validation_list.txt', 'testing_list.txt' are stored in
    • 2 folders will be created in data_root: 'ReverDB_data (Removable if needed)', 'ReverDB_mix'

  2. download_and_extract_noise_file.py: Generate musan noise file

    • one parameters are needed:
      • --data_root: the data path which you want to download and store the noise dataset in.
    • 2 folder will be created in data_root: 'musan (Removable if needed)', 'noise'
  3. vad_torch.py: Voice activity detection when adding noise to the speech

    The noise data is usually added online according to the SNR requirements, several pieces of code are provided below, please add them in the appropriate places according to your needs!

    import torchaudio
    import numpy as np
    import torch
    import random
    from vad_torch import VoiceActivityDetector
    
    
    def _add_noise(speech_sig, vad_duration, noise_sig, snr):
        """add noise to the audio.
        :param speech_sig: The input audio signal (Tensor).
        :param vad_duration: The length of the human voice (int).
        :param noise_sig: The input noise signal (Tensor).
        :param snr: the SNR you want to add (int).
        :returns: noisy speech sig with specific snr.
        """
        if vad_duration != 0:
            snr = 10**(snr/10.0)
            speech_power = torch.sum(speech_sig**2)/vad_duration
            noise_power = torch.sum(noise_sig**2)/noise_sig.shape[1]
            noise_update = noise_sig / torch.sqrt(snr * noise_power/speech_power)
    
            if speech_sig.shape[1] > noise_update.shape[1]:
                # padding
                temp_wav = torch.zeros(1, speech_sig.shape[1])
                temp_wav[0, 0:noise_update.shape[1]] = noise_update
                noise_update = temp_wav
            else:
                # cutting
                noise_update = noise_update[0, 0:speech_sig.shape[1]]
    
            return noise_update + speech_sig
        
        else:
            return speech_sig
        
    def main():
        # loading speech file
        speech_file = './speech.wav'
    	waveform, sr = torchaudio.load(speech_file)
    	waveform = waveform - waveform.mean()
    	
        # loading noise file and set snr
    	snr = 0       
    	noise_file = random.randint(1, 930)
    	
        # Voice activity detection
    	v = VoiceActivityDetector(waveform, sr)
    	raw_detection = v.detect_speech()
    	speech_labels = v.convert_windows_to_readible_labels(raw_detection)
    	vad_duration = 0
        if not len(speech_labels) == 0:
            for i in range(len(speech_labels)):
                start = speech_labels[i]['speech_begin']
                end = speech_labels[i]['speech_end']
                vad_duration = vad_duration + end-start
                
    	# adding noise
        noise, _ = torchaudio.load('/notebooks/noise/' + str(noise_file) + '.wav')
        waveform = _add_noise(waveform, vad_duration, noise, snr)
    
    if __name__ == '__main__':
        main()
Owner
Yunqi Chen
3rd-year undergraduate student; Passionate about all kinds of sports and everything interesting!
Yunqi Chen
Convert Photoshop curves (acv) to xmp presets for Lightroom

acv2xmp Convert Photoshop curves (acv) to Lightroom preset (xmp) acv2xmp.py Basic command prompt that relies on standard library only and can be used

5 Feb 06, 2022
Automated rop chain generation

This is the accompanying code to the blog post talking about automated rop chain generation. Build the test file with: make Install the dependencies:

Christopher Roberts 14 Nov 22, 2022
EloGGs 🎮 is a 1v1.LOL Trophy Boosting Program (PATCHED)

EloGGs 🎮 is an old patched 1v1.LOL boosting program I developed months ago, My team made around $1000 total off of this, but now it's been patched by the developers.

doop 1 Jul 22, 2022
Find your desired product in Digikala using this app.

Digikala Search Find your desired product in Digikala using this app. با این برنامه محصول مورد نظر خود را در دیجیکالا پیدا کنید. About me Full name: M

Matin Ardestani 17 Sep 15, 2022
APRS Track Direct is a collection of tools that can be used to run an APRS website

APRS Track Direct APRS Track Direct is a collection of tools that can be used to run an APRS website. You can use data from APRS-IS, CWOP-IS, OGN, HUB

Per Qvarforth 42 Dec 29, 2022
An end-to-end Python-based Infrastructure as Code framework for network automation and orchestration.

Nectl An end-to-end Python-based Infrastructure as Code framework for network automation and orchestration. Features Data modelling and validation. Da

Adam Kirchberger 15 Oct 14, 2022
Decentralized intelligent voting application.

DiVA Decentralized intelligent voting application. Hack the North 2021. Inspiration Following the previous US election, many voters were fearful that

Ali Shariatmadari 4 Jun 05, 2022
The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Add_noise_and_rir_to_speech The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal

Yunqi Chen 7 Oct 30, 2022
All exercises done during the Python 3 course in the Video Course (World 1, 2 and 3)

Python3-cursoemvideo-exercises - All exercises done during the Python 3 course in the Video Course (World 1, 2 and 3)

Renan Barbosa 3 Jan 17, 2022
A simple app that helps to train quick calculations.

qtcounter A simple app that helps to train quick calculations. Usage Manual Clone the repo in a folder using git clone https://github.com/Froloket64/q

0 Nov 27, 2021
A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

A set of scripts for a two-step procedure to measure the value of access to destinations across several modes of travel within a geographic area.

Institute for Transportation and Development Policy 2 Oct 16, 2022
take home quiz

guess the correlation data inspection a pretty normal distribution train/val/test split splitting amount .dataset: 150000 instances ├─8

HR Wu 1 Nov 04, 2021
Flask-built web application that simulates a time and cost calculator for charging Electric Vehicles.

ev_charging_calculator Flask-built web application that simulates a time and cost calculator for charging Electric Vehicles. The project aims to simul

1 Nov 03, 2021
CDM Device Checker for python

CDM Device Checker for python

zackmark29 79 Dec 14, 2022
Active Transport Analytics Model: A new strategic transport modelling and data visualization framework

{ATAM} Active Transport Analytics Model Active Transport Analytics Model (“ATAM”

ATAM Analytics 2 Dec 21, 2022
A type based dependency injection framework for Python 3.9+

Alluka A type based dependency injection framework for Python 3.9+. Installation You can install Alluka from PyPI using the following command in any P

Lucina 16 Dec 15, 2022
sawa (ꦱꦮ) is an open source programming language, an interpreter to be precise, where you can write python code using javanese character.

ꦱꦮ sawa (ꦱꦮ) is an open source programming language, an interpreter to be precise, where you can write python code using javanese character. sawa iku

Rony Lantip 307 Jan 07, 2023
A basic layout of atm working of my local database

Software for working Banking service 😄 This project was developed for Banking service. mysql server is required To have mysql server on your system u

satya 1 Oct 21, 2021
Goddard A collection of small, simple strategies for Freqtrade

Goddard A collection of small, simple strategies for Freqtrade. Simply add the strategy you choose in your strategies folder and run. ⚠️ General Crypt

Shane Jones 118 Dec 14, 2022
Python implementation of the Learning Time-Series Shapelets method, that learns a shapelet-based time-series classifier with gradient descent.

shaplets Python implementation of the Learning Time-Series Shapelets method by Josif Grabocka et al., that learns a shapelet-based time-series classif

Mohamed Haseeb 187 Dec 14, 2022