Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

Overview

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations

Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital

framework

Introduction

This repository contains the implementation of our TearingNet paper accepted in CVPR 2021. Given a point cloud dataset containing objects with various genera, or scenes with multiple objects, we propose the TearingNet, which is an autoencoder tackling the challenging task of representing the point clouds using a fixed-length descriptor. Unlike existing works directly deforming predefined primitives of genus zero (e.g., a 2D square patch) to an object-level point cloud, our TearingNet is characterized by a proposed Tearing network module and a Folding network module interacting with each other iteratively. Particularly, the Tearing network module learns the point cloud topology explicitly. By breaking the edges of a primitive graph, it tears the graph into patches or with holes to emulate the topology of a target point cloud, leading to faithful reconstructions.

Installation

  • We use Python 3.6, PyTorch 1.3.1 and CUDA 10.0, example commands to set up a virtual environment with anaconda are:
conda create tearingnet python=3.6
conda activate tearingnet
conda install pytorch=1.3.1 torchvision=0.4.2 cudatoolkit=10.0 -c pytorch 
conda install -c open3d-admin open3d
conda install -c conda-forge tensorboardx
conda install -c anaconda h5py

Data Preparation

KITTI Multi-Object Dataset

  • Our KITTI Multi-Object (KIMO) Dataset is constructed with kitti_dataset.py of PCDet (commit 95d2ab5). Please clone and install PCDet, then prepare the KITTI dataset according to their instructions.
  • Assume the name of the cloned folder is PCDet, please replace the create_groundtruth_database() function in kitti_dataset.py by our modified one provided in TearingNet/util/pcdet_create_grouth_database.py.
  • Prepare the KITTI dataset, then generate the data infos according to the instructions in the README.md of PCDet.
  • Create the folders TearingNet/dataset and TearingNet/dataset/kittimulobj then put the newly-generated folder PCDet/data/kitti/kitti_single under TearingNet/dataset/kittimulobj. Also, put the newly-generated file PCDet/data/kitti/kitti_dbinfos_object.pkl under the TearingNet/dataset/kittimulobj folder.
  • Instead of assembling several single-object point clouds together and write down as a multi-object point cloud, we generate the parameters that parameterize the multi-object point clouds then assemble them on the fly during training/testing. To obtain the parameters, run our prepared scripts as follows under the TearingNet folder. These scripts generate the training and testing splits of the KIMO-5 dataset:
./scripts/launch.sh ./scripts/gen_data/gen_kitti_mulobj_train_5x5.sh
./scripts/launch.sh ./scripts/gen_data/gen_kitti_mulobj_test_5x5.sh
  • The file structure of the KIMO dataset after these steps becomes:
kittimulobj
      ├── kitti_dbinfos_object.pkl
      ├── kitti_mulobj_param_test_5x5_2048.pkl
      ├── kitti_mulobj_param_train_5x5_2048.pkl
      └── kitti_single
              ├── 0_0_Pedestrian.bin
              ├── 1000_0_Car.bin
              ├── 1000_1_Car.bin
              ├── 1000_2_Van.bin
              ...

CAD Model Multi-Object Dataset

dataset
    ├── cadmulobj
    ├── kittimulobj
    ├── modelnet40
    │       └── modelnet40_ply_hdf5_2048
    │                   ├── ply_data_test0.h5
    │                   ├── ply_data_test_0_id2file.json
    │                   ├── ply_data_test1.h5
    │                   ├── ply_data_test_1_id2file.json
    │                   ...
    └── shapenet_part
            ├── shapenetcore_partanno_segmentation_benchmark_v0
            │   ├── 02691156
            │   │   ├── points
            │   │   │   ├── 1021a0914a7207aff927ed529ad90a11.pts
            │   │   │   ├── 103c9e43cdf6501c62b600da24e0965.pts
            │   │   │   ├── 105f7f51e4140ee4b6b87e72ead132ed.pts
            ...
  • Extract the "person", "car", "cone" and "plant" models from ModelNet40, and the "motorbike" models from the ShapeNet part dataset, by running the following Python script under the TearingNet folder:
python util/cad_models_collector.py
  • The previous step generates the file TearingNet/dataset/cadmulobj/cad_models.npy, based on which we generate the parameters for the CAMO dataset. To do so, launch the following scripts:
./scripts/launch.sh ./scripts/gen_data/gen_cad_mulobj_train_5x5.sh
./scripts/launch.sh ./scripts/gen_data/gen_cad_mulobj_test_5x5.sh
  • The file structure of the CAMO dataset after these steps becomes:
cadmulobj
    ├── cad_models.npy
    ├── cad_mulobj_param_test_5x5.npy
    └── cad_mulobj_param_train_5x5.npy

Experiments

Training

We employ a two-stage training strategy to train the TearingNet. The first step is to train a FoldingNet (E-Net & F-Net in paper). Take the KIMO dataset as an example, launch the following scripts under the TearingNet folder:

./scripts/launch.sh ./scripts/experiments/train_folding_kitti.sh

Having finished the first step, a pretrained model will be saved in TearingNet/results/train_folding_kitti. To load the pretrained FoldingNet into a TearingNet configuration and perform training, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/train_tearing_kitti.sh

To see the meanings of the parameters in train_folding_kitti.sh and train_tearing_kitti.sh, check the Python script TearinNet/util/option_handler.py.

Reconstruction

To perform the reconstruction experiment with the trained model, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/reconstruction.sh

One may write down the reconstructions in PLY format by setting a positive PC_WRITE_FREQ value. Again, please refer to TearinNet/util/option_handler.py for the meanings of individual parameters.

Counting

To perform the counting experiment with the trained model, launch the following scripts:

./scripts/launch.sh ./scripts/experiments/counting.sh

Citing this Work

Please cite our work if you find it useful for your research:

@inproceedings{pang2021tearingnet, 
    title={TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations}, 
    author={Pang, Jiahao and Li, Duanshun, and Tian, Dong}, 
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year={2021}
}

Related Projects

torus interpolation

Owner
InterDigital
InterDigital
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Submit issues and feature requests for our API here.

AIx GPT API Submit issues and feature requests for our API here. See https://apps.aixsolutionsgroup.com for more info. Python Quick Start pip install

AIx Solutions 7 Mar 27, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022