Python Package for DataHerb: create, search, and load datasets.

Overview


Markdownify
The Python Package for DataHerb

A DataHerb Core Service to Create and Load Datasets.

Install

pip install dataherb

Documentation: dataherb.github.io/dataherb-python

The DataHerb Command-Line Tool

Requires Python 3

The DataHerb cli provides tools to create dataset metadata, validate metadata, search dataset in flora, and download dataset.

Search and Download

Search by keyword

dataherb search covid19
# Shows the minimal metadata

Search by dataherb id

dataherb search -i covid19_eu_data
# Shows the full metadata

Download dataset by dataherb id

dataherb download covid19_eu_data
# Downloads this dataset: http://dataherb.io/flora/covid19_eu_data

Create Dataset Using Command Line Tool

We provide a template for dataset creation.

Within a dataset folder where the data files are located, use the following command line tool to create the metadata template.

dataherb create

Upload dataset to remote

Within the dataset folder, run

dataherb upload

UI for all the datasets in a flora

dataherb serve

Use DataHerb in Your Code

Load Data into DataFrame

# Load the package
from dataherb.flora import Flora

# Initialize Flora service
# The Flora service holds all the dataset metadata
use_flora = "path/to/my/flora.json"
dataherb = Flora(flora=use_flora)

# Search datasets with keyword(s)
geo_datasets = dataherb.search("geo")
print(geo_datasets)

# Get a specific file from a dataset and load as DataFrame
tz_df = pd.read_csv(
  dataherb.herb(
      "geonames_timezone"
  ).get_resource(
      "dataset/geonames_timezone.csv"
  )
)
print(tz_df)

The DataHerb Project

What is DataHerb

DataHerb is an open-source data discovery and management tool.

  • A DataHerb or Herb is a dataset. A dataset comes with the data files, and the metadata of the data files.
  • A Herb Resource or Resource is a data file in the DataHerb.
  • A Flora is the combination of all the DataHerbs.

In many data projects, finding the right datasets to enhance your data is one of the most time consuming part. DataHerb adds flavor to your data project. By creating metadata and manage the datasets systematically, locating an dataset is much easier.

Currently, dataherb supports sync dataset between local and S3/git. Each dataset can have its own remote location.

What is DataHerb Flora

We desigined the following workflow to share and index open datasets.

DataHerb Workflow

The repo dataherb-flora is a demo flora that lists some datasets and demonstrated on the website https://dataherb.github.io. At this moment, the whole system is being renovated.

Development

  1. Create a conda environment.
  2. Install requirements: pip install -r requirements.txt

Documentation

The source of the documentation for this package is located at docs.

References and Acknolwedgement

  • dataherb uses datapackage in the core. datapackage is a python library for the data-package standard. The core schema of the dataset is essentially the data-package standard.
Comments
  • would you like to take a look at our api?

    would you like to take a look at our api?

    I come across this repo and found it very similar to our API, though much more mature. https://github.com/Glacier-Ice/data-sci-api

    we have problems in creating a standard of dataset collection and API documentation for end-users

    is there a way we can collaborate?

    opened by Stockard 4
  • Format search results for better ux

    Format search results for better ux

    The current search result shows too much information. It would be good to format the result into a way that is easier to read and get the id if needed.

    enhancement 
    opened by emptymalei 1
  • use rapidfuzz instead of fuzzywuzzy

    use rapidfuzz instead of fuzzywuzzy

    FuzzyWuzzy is GPLv2 licensed which would force you to licence the whole project under GPLv2. I had the same problem on one of my projects and so I wrote rapidfuzz which is implementing the same algorithm but is based on a version of fuzzywuzzy that was MIT Licensed and is therefor MIT Licensed aswell, so it can be used in here without forcing a License change. As a nice bonus it is fully implemented in C++ and comes with a few Algorithmic improvements making it faster than FuzzyWuzzy.

    opened by maxbachmann 1
  • Use One File for Each Herb in Flora

    Use One File for Each Herb in Flora

    Is it better to have one file for each herb in flora?

    Situition

    Currently, the flora is defined in a single json file.

    • It becomes hard to read. This is not fitting into the human-readable principle.
    • It becomes hard to manage. We are currently sorting everything in the big file. When we have a problem, the whole flora will be unusable.

    Solution

    Use separate files for herbs.

    Simply Copy dataherb.json

    • Copy dataherb.json to workdir/{id}/dataherb.json or {id}.json will work.

      • Using folders allows us to put in more files. For example, we can take datapackage content out to make it more managable.
    • Build the flora from all these files.

    • [x] Implement this new structure.

    Ready for a Demo repo of flora

    In this way, we can put up a repo for open datasets easily and allow users to add more easily.

    Possible creating process

    • Create package directly on GitHub by uploading the dataherb.json file.

      • But there should be a validation process to avoid duplicate id.
    • [ ] Setup a demo repo as demo flora.

    enhancement 
    opened by emptymalei 0
  • Overhaul: New Core Management, Local Indexing Webpage, Flexible Flora Database

    Overhaul: New Core Management, Local Indexing Webpage, Flexible Flora Database

    This is a completely new era of Dataherb.

    New Stuff

    • Supporting S3 as source
    • Serve whole flora as webpages with search
    • User config for flora
    • Multiple flora on one machine

    We also redesigned the core.

    opened by emptymalei 0
  • Add dataset using the URL of a remote repo

    Add dataset using the URL of a remote repo

    We don't only upload datasets, we might also want to load datasets from remote.

    Here we propose to add the option to add datasets using the URL.

    • Build a Herb from remote data
    • Option to add metadata only or download everything.
      • Adding metadata only will only add data to the flora
      • Thus we can not find the dataset folder with the corresponding id.
      • This can be used to decide if a dataset is metadata only or fully downloaded.
    opened by emptymalei 0
  • Sync Flora Metafolder

    Sync Flora Metafolder

    Managing flora using command line

    Version control of the flora is not really hard. We just get into the folder and use git.

    But it would be much easier if we can simply run dataherb sync flora


    Approaches:

    enhancement 
    opened by emptymalei 0
Releases(0.1.6)
  • 0.1.6(Feb 10, 2022)

    Fixed

    • Command line tool dataherb configure -l now only opens the folder.
    • Command line too dataherb download will also display where the dataset is downloaded to. This makes it easier for the user to find the downloaded dataset.
    Source code(tar.gz)
    Source code(zip)
  • 0.1.5(Aug 12, 2021)

    Using Dedicated Folders for Herbs

    In the previous versions, we can only use a single file to host all the flora metadata. It will become unmanageable and hard to read as the number of herbs grows. (#14)

    In this version, we introduce a new structure for the flora metadata. Each herb is getting its own folder! This structure makes it easier for us to read and manage by hand. It is also better for version-controling your flora.

    (🌱 Best wishes to your herbs in their own pots. )

    Source code(tar.gz)
    Source code(zip)
  • 0.1.4(Aug 7, 2021)

  • 0.1.3(Aug 7, 2021)

  • 0.0.5(Mar 14, 2020)

  • 0.0.3(Feb 23, 2020)

    dataherb command line tool now automatically finds the data files and generate part of the metadata based on the files. CSV files are automatically parsed.

    Source code(tar.gz)
    Source code(zip)
Owner
DataHerb
Get datasets in a blink of an eye | Experimenting with simple modular small dataset discovery
DataHerb
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
Churn prediction with PySpark

It is expected to develop a machine learning model that can predict customers who will leave the company.

3 Aug 13, 2021
Anomaly Detection with R

AnomalyDetection R package AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the pre

Twitter 3.5k Dec 27, 2022
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
Manage large and heterogeneous data spaces on the file system.

signac - simple data management The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, and reproduc

Glotzer Group 109 Dec 14, 2022
Vectorizers for a range of different data types

Vectorizers for a range of different data types

Tutte Institute for Mathematics and Computing 69 Dec 29, 2022
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023