Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Overview

AutoML in Healthcare Review

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Selected highlights from the 2020 AutoML Review [https://doi.org/10.1016/j.artmed.2020.101822] that reviewed over 2,160 works related to the field of automated machine learning.

The curated list of automated feature engineering tools for Automated Machine Learning

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0005

Method Work Feature Engineering Technique Used by how many works
Deep Feature Synthesis LINK Expand-Reduce 151
Explore Kit LINK Expand-Reduce 53
One Button Machine LINK Expand-Reduce 32
AutoLearn LINK Expand-Reduce 16
GP Feature Construction LINK Genetic Programming 68
Cognito LINK Hierarchical Greedy Search 38
RLFE LINK Reinforcement Learning 21
LFE LINK Meta-Learning 34

Automated machine learning pipeline optimizers

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0010

Method Work Optimization Algorithm Data Pre-Processing Feature Engineering Model Selection Hyperparameter Optimization Ensemble Learning Meta-Learning Used by how many works
Auto-Weka LINK Bayesian Optimization (SMAC) ✔️ ✔️ ✔️ 703
Auto-Sklearn LINK Joint Bayesian Optimization and Bandit Search (BOHB) ✔️ ✔️ ✔️ ✔️ ✔️ 542
TPOT LINK Evolutionary Algorithm ✔️ ✔️ ✔️ ✔️ 84
TuPAQ LINK Bandit Search ✔️ ✔️ 94
ATM LINK Joint Bayesian Optimization and Bandit Search ✔️ ✔️ ✔️ 29
Automatic Frankensteining LINK Bayesian Optimization ✔️ ✔️ ✔️ 12
ML-Plan LINK Hierarchical Task Networks (HTN) ✔️ ✔️ ✔️ 24
Autostacker LINK Evolutionary Algorithm ✔️ ✔️ ✔️ 18
AlphaD3M LINK Reinforcement Learning/Monte Carlo Tree Search ✔️ ✔️ ✔️ 8
Collaborative Filtering LINK Probabilistic Matrix Factorization ✔️ ✔️ ✔️ ✔️ 29

Neural Architecture Search algorithms, based on performance on the CIFAR-10 dataset

Full details in https://www.sciencedirect.com/science/article/pii/S0933365719310437?via%3Dihub#tbl0015

NAS Algorithm Work Search Space Search Strategy Performance Estimation Strategy Number of Parameters Search Time (GPU-days) Test Error (%)
Large-scale Evolution LINK Feed-Forward Networks Evolutionary Algorithm Naive Training and Validation 5.4M 2600 5.4
EAS LINK Feed-Forward Networks Reinforcement Learning and Network Morphism Short Training and Validation 23.4M 10 4.23
Hierarchical Evolution LINK Cell Motifs Evolutionary Algorithm Training and Validation on proposed CNN Cell 15.7M 300 3.75
NAS v3 LINK Multi-branched Networks Reinforcement Learning Naive Training and Validation 37.4M 22400 3.65
PNAS LINK Cell Motifs Sequential Model-Based Optimization (SMBO) Performance Prediction 3.2M 225 3.41
ENAS LINK Cell Motifs Reinforcement Learning One Shot 4.6M 0.45 2.89
ResNet + Regularization LINK HUMAN BASELINE HUMAN BASELINE HUMAN BASELINE 26.2M - 2.86
DARTS LINK Cell Motifs Gradient-Based Optimization Training and Validation on proposed CNN Cell 3.4M 4 2.83
NASNet-A LINK Cell Motifs Reinforcement Learning Naive Training and Validation 3.3M 2000 2.65
EENA LINK Cell Motifs Evolutionary Algorithm Performance Prediction 8.5M 0.65 2.56
Path-Level EAS LINK Cell Motifs Reinforcement Learning Short Training and Validation 14.3M 200 2.30
NAO LINK Cell Motifs Gradient-Based Optimization Performance Prediction 128M 200 2.11
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021