Parameterized testing with any Python test framework

Related tags

Testingparameterized
Overview

Parameterized testing with any Python test framework

PyPI PyPI - Downloads Circle CI

Parameterized testing in Python sucks.

parameterized fixes that. For everything. Parameterized testing for nose, parameterized testing for py.test, parameterized testing for unittest.

# test_math.py
from nose.tools import assert_equal
from parameterized import parameterized, parameterized_class

import unittest
import math

@parameterized([
    (2, 2, 4),
    (2, 3, 8),
    (1, 9, 1),
    (0, 9, 0),
])
def test_pow(base, exponent, expected):
   assert_equal(math.pow(base, exponent), expected)

class TestMathUnitTest(unittest.TestCase):
   @parameterized.expand([
       ("negative", -1.5, -2.0),
       ("integer", 1, 1.0),
       ("large fraction", 1.6, 1),
   ])
   def test_floor(self, name, input, expected):
       assert_equal(math.floor(input), expected)

@parameterized_class(('a', 'b', 'expected_sum', 'expected_product'), [
   (1, 2, 3, 2),
   (5, 5, 10, 25),
])
class TestMathClass(unittest.TestCase):
   def test_add(self):
      assert_equal(self.a + self.b, self.expected_sum)

   def test_multiply(self):
      assert_equal(self.a * self.b, self.expected_product)

@parameterized_class([
   { "a": 3, "expected": 2 },
   { "b": 5, "expected": -4 },
])
class TestMathClassDict(unittest.TestCase):
   a = 1
   b = 1

   def test_subtract(self):
      assert_equal(self.a - self.b, self.expected)

With nose (and nose2):

$ nosetests -v test_math.py
test_floor_0_negative (test_math.TestMathUnitTest) ... ok
test_floor_1_integer (test_math.TestMathUnitTest) ... ok
test_floor_2_large_fraction (test_math.TestMathUnitTest) ... ok
test_math.test_pow(2, 2, 4, {}) ... ok
test_math.test_pow(2, 3, 8, {}) ... ok
test_math.test_pow(1, 9, 1, {}) ... ok
test_math.test_pow(0, 9, 0, {}) ... ok
test_add (test_math.TestMathClass_0) ... ok
test_multiply (test_math.TestMathClass_0) ... ok
test_add (test_math.TestMathClass_1) ... ok
test_multiply (test_math.TestMathClass_1) ... ok
test_subtract (test_math.TestMathClassDict_0) ... ok

----------------------------------------------------------------------
Ran 12 tests in 0.015s

OK

As the package name suggests, nose is best supported and will be used for all further examples.

With py.test (version 2.0 and above):

$ py.test -v test_math.py
============================= test session starts ==============================
platform darwin -- Python 3.6.1, pytest-3.1.3, py-1.4.34, pluggy-0.4.0
collecting ... collected 13 items

test_math.py::test_pow::[0] PASSED
test_math.py::test_pow::[1] PASSED
test_math.py::test_pow::[2] PASSED
test_math.py::test_pow::[3] PASSED
test_math.py::TestMathUnitTest::test_floor_0_negative PASSED
test_math.py::TestMathUnitTest::test_floor_1_integer PASSED
test_math.py::TestMathUnitTest::test_floor_2_large_fraction PASSED
test_math.py::TestMathClass_0::test_add PASSED
test_math.py::TestMathClass_0::test_multiply PASSED
test_math.py::TestMathClass_1::test_add PASSED
test_math.py::TestMathClass_1::test_multiply PASSED
test_math.py::TestMathClassDict_0::test_subtract PASSED
==================== 12 passed, 4 warnings in 0.16 seconds =====================

With unittest (and unittest2):

$ python -m unittest -v test_math
test_floor_0_negative (test_math.TestMathUnitTest) ... ok
test_floor_1_integer (test_math.TestMathUnitTest) ... ok
test_floor_2_large_fraction (test_math.TestMathUnitTest) ... ok
test_add (test_math.TestMathClass_0) ... ok
test_multiply (test_math.TestMathClass_0) ... ok
test_add (test_math.TestMathClass_1) ... ok
test_multiply (test_math.TestMathClass_1) ... ok
test_subtract (test_math.TestMathClassDict_0) ... ok

----------------------------------------------------------------------
Ran 8 tests in 0.001s

OK

(note: because unittest does not support test decorators, only tests created with @parameterized.expand will be executed)

With green:

$ green test_math.py -vvv
test_math
  TestMathClass_1
.   test_method_a
.   test_method_b
  TestMathClass_2
.   test_method_a
.   test_method_b
  TestMathClass_3
.   test_method_a
.   test_method_b
  TestMathUnitTest
.   test_floor_0_negative
.   test_floor_1_integer
.   test_floor_2_large_fraction
  TestMathClass_0
.   test_add
.   test_multiply
  TestMathClass_1
.   test_add
.   test_multiply
  TestMathClassDict_0
.   test_subtract

Ran 12 tests in 0.121s

OK (passes=9)

Installation

$ pip install parameterized

Compatibility

Yes (mostly).

  Py2.6 Py2.7 Py3.4 Py3.5 Py3.6 Py3.7 Py3.8 Py3.9 PyPy @mock.patch
nose yes yes yes yes yes yes yes yes yes yes
nose2 yes yes yes yes yes yes yes yes yes yes
py.test 2 yes yes no* no* no* no* yes yes yes yes
py.test 3 yes yes yes yes yes yes yes yes yes yes
py.test 4 no** no** no** no** no** no** no** no** no** no**
py.test fixtures no† no† no† no† no† no† no† no† no† no†
unittest
(@parameterized.expand)
yes yes yes yes yes yes yes yes yes yes
unittest2
(@parameterized.expand)
yes yes yes yes yes yes yes yes yes yes

*: py.test 2 does does not appear to work (#71) under Python 3. Please comment on the related issues if you are affected.

**: py.test 4 is not yet supported (but coming!) in issue #34

†: py.test fixture support is documented in issue #81

Dependencies

(this section left intentionally blank)

Exhaustive Usage Examples

The @parameterized and @parameterized.expand decorators accept a list or iterable of tuples or param(...), or a callable which returns a list or iterable:

from parameterized import parameterized, param

# A list of tuples
@parameterized([
    (2, 3, 5),
    (3, 5, 8),
])
def test_add(a, b, expected):
    assert_equal(a + b, expected)

# A list of params
@parameterized([
    param("10", 10),
    param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
    assert_equal(int(str_val, base=base), expected)

# An iterable of params
@parameterized(
    param.explicit(*json.loads(line))
    for line in open("testcases.jsons")
)
def test_from_json_file(...):
    ...

# A callable which returns a list of tuples
def load_test_cases():
    return [
        ("test1", ),
        ("test2", ),
    ]
@parameterized(load_test_cases)
def test_from_function(name):
    ...

Note that, when using an iterator or a generator, all the items will be loaded into memory before the start of the test run (we do this explicitly to ensure that generators are exhausted exactly once in multi-process or multi-threaded testing environments).

The @parameterized decorator can be used test class methods, and standalone functions:

from parameterized import parameterized

class AddTest(object):
    @parameterized([
        (2, 3, 5),
    ])
    def test_add(self, a, b, expected):
        assert_equal(a + b, expected)

@parameterized([
    (2, 3, 5),
])
def test_add(a, b, expected):
    assert_equal(a + b, expected)

And @parameterized.expand can be used to generate test methods in situations where test generators cannot be used (for example, when the test class is a subclass of unittest.TestCase):

import unittest
from parameterized import parameterized

class AddTestCase(unittest.TestCase):
    @parameterized.expand([
        ("2 and 3", 2, 3, 5),
        ("3 and 5", 2, 3, 5),
    ])
    def test_add(self, _, a, b, expected):
        assert_equal(a + b, expected)

Will create the test cases:

$ nosetests example.py
test_add_0_2_and_3 (example.AddTestCase) ... ok
test_add_1_3_and_5 (example.AddTestCase) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

Note that @parameterized.expand works by creating new methods on the test class. If the first parameter is a string, that string will be added to the end of the method name. For example, the test case above will generate the methods test_add_0_2_and_3 and test_add_1_3_and_5.

The names of the test cases generated by @parameterized.expand can be customized using the name_func keyword argument. The value should be a function which accepts three arguments: testcase_func, param_num, and params, and it should return the name of the test case. testcase_func will be the function to be tested, param_num will be the index of the test case parameters in the list of parameters, and param (an instance of param) will be the parameters which will be used.

import unittest
from parameterized import parameterized

def custom_name_func(testcase_func, param_num, param):
    return "%s_%s" %(
        testcase_func.__name__,
        parameterized.to_safe_name("_".join(str(x) for x in param.args)),
    )

class AddTestCase(unittest.TestCase):
    @parameterized.expand([
        (2, 3, 5),
        (2, 3, 5),
    ], name_func=custom_name_func)
    def test_add(self, a, b, expected):
        assert_equal(a + b, expected)

Will create the test cases:

$ nosetests example.py
test_add_1_2_3 (example.AddTestCase) ... ok
test_add_2_3_5 (example.AddTestCase) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

The param(...) helper class stores the parameters for one specific test case. It can be used to pass keyword arguments to test cases:

from parameterized import parameterized, param

@parameterized([
    param("10", 10),
    param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
    assert_equal(int(str_val, base=base), expected)

If test cases have a docstring, the parameters for that test case will be appended to the first line of the docstring. This behavior can be controlled with the doc_func argument:

from parameterized import parameterized

@parameterized([
    (1, 2, 3),
    (4, 5, 9),
])
def test_add(a, b, expected):
    """ Test addition. """
    assert_equal(a + b, expected)

def my_doc_func(func, num, param):
    return "%s: %s with %s" %(num, func.__name__, param)

@parameterized([
    (5, 4, 1),
    (9, 6, 3),
], doc_func=my_doc_func)
def test_subtraction(a, b, expected):
    assert_equal(a - b, expected)
$ nosetests example.py
Test addition. [with a=1, b=2, expected=3] ... ok
Test addition. [with a=4, b=5, expected=9] ... ok
0: test_subtraction with param(*(5, 4, 1)) ... ok
1: test_subtraction with param(*(9, 6, 3)) ... ok

----------------------------------------------------------------------
Ran 4 tests in 0.001s

OK

Finally @parameterized_class parameterizes an entire class, using either a list of attributes, or a list of dicts that will be applied to the class:

from yourapp.models import User
from parameterized import parameterized_class

@parameterized_class([
   { "username": "user_1", "access_level": 1 },
   { "username": "user_2", "access_level": 2, "expected_status_code": 404 },
])
class TestUserAccessLevel(TestCase):
   expected_status_code = 200

   def setUp(self):
      self.client.force_login(User.objects.get(username=self.username)[0])

   def test_url_a(self):
      response = self.client.get('/url')
      self.assertEqual(response.status_code, self.expected_status_code)

   def tearDown(self):
      self.client.logout()


@parameterized_class(("username", "access_level", "expected_status_code"), [
   ("user_1", 1, 200),
   ("user_2", 2, 404)
])
class TestUserAccessLevel(TestCase):
   def setUp(self):
      self.client.force_login(User.objects.get(username=self.username)[0])

   def test_url_a(self):
      response = self.client.get("/url")
      self.assertEqual(response.status_code, self.expected_status_code)

   def tearDown(self):
      self.client.logout()

The @parameterized_class decorator accepts a class_name_func argument, which controls the name of the parameterized classes generated by @parameterized_class:

from parameterized import parameterized, parameterized_class

def get_class_name(cls, num, params_dict):
    # By default the generated class named includes either the "name"
    # parameter (if present), or the first string value. This example shows
    # multiple parameters being included in the generated class name:
    return "%s_%s_%s%s" %(
        cls.__name__,
        num,
        parameterized.to_safe_name(params_dict['a']),
        parameterized.to_safe_name(params_dict['b']),
    )

@parameterized_class([
   { "a": "hello", "b": " world!", "expected": "hello world!" },
   { "a": "say ", "b": " cheese :)", "expected": "say cheese :)" },
], class_name_func=get_class_name)
class TestConcatenation(TestCase):
  def test_concat(self):
      self.assertEqual(self.a + self.b, self.expected)
$ nosetests -v test_math.py
test_concat (test_concat.TestConcatenation_0_hello_world_) ... ok
test_concat (test_concat.TestConcatenation_0_say_cheese__) ... ok

Using with Single Parameters

If a test function only accepts one parameter and the value is not iterable, then it is possible to supply a list of values without wrapping each one in a tuple:

@parameterized([1, 2, 3])
def test_greater_than_zero(value):
   assert value > 0

Note, however, that if the single parameter is iterable (such as a list or tuple), then it must be wrapped in a tuple, list, or the param(...) helper:

@parameterized([
   ([1, 2, 3], ),
   ([3, 3], ),
   ([6], ),
])
def test_sums_to_6(numbers):
   assert sum(numbers) == 6

(note, also, that Python requires single element tuples to be defined with a trailing comma: (foo, ))

Using with @mock.patch

parameterized can be used with mock.patch, but the argument ordering can be confusing. The @mock.patch(...) decorator must come below the @parameterized(...), and the mocked parameters must come last:

@mock.patch("os.getpid")
class TestOS(object):
   @parameterized(...)
   @mock.patch("os.fdopen")
   @mock.patch("os.umask")
   def test_method(self, param1, param2, ..., mock_umask, mock_fdopen, mock_getpid):
      ...

Note: the same holds true when using @parameterized.expand.

Migrating from nose-parameterized to parameterized

To migrate a codebase from nose-parameterized to parameterized:

  1. Update your requirements file, replacing nose-parameterized with parameterized.

  2. Replace all references to nose_parameterized with parameterized:

    $ perl -pi -e 's/nose_parameterized/parameterized/g' your-codebase/
    
  3. You're done!

FAQ

What happened to nose-parameterized?
Originally only nose was supported. But now everything is supported, and it only made sense to change the name!
What do you mean when you say "nose is best supported"?
There are small caveates with py.test and unittest: py.test does not show the parameter values (ex, it will show test_add[0] instead of test_add[1, 2, 3]), and unittest/unittest2 do not support test generators so @parameterized.expand must be used.
Why not use @pytest.mark.parametrize?
Because spelling is difficult. Also, parameterized doesn't require you to repeat argument names, and (using param) it supports optional keyword arguments.
Why do I get an AttributeError: 'function' object has no attribute 'expand' with @parameterized.expand?
You've likely installed the parametrized (note the missing e) package. Use parameterized (with the e) instead and you'll be all set.
Owner
David Wolever
David Wolever
A Python program that will log into your scheduled Google Meets hands free

Chrome GMautomation General Information This Python program will open up Chrome and log into your scheduled Google Meet with camera and mic turned off

Jonathan Leow 5 Dec 31, 2021
This is a simple software for fetching new changes to remote repositories automatically.

Git Autofetch Git Autofetch is a simple software for fetching new changes from a repo to local repositories after a set time interval. This program is

Shreyas Ashtamkar 10 Jul 21, 2022
GitHub action for AppSweep Mobile Application Security Testing

GitHub action for AppSweep can be used to continuously integrate app scanning using AppSweep into your Android app build process

Guardsquare 14 Oct 06, 2022
Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes in a variety of languages.

Mimesis - Fake Data Generator Description Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes

Isaak Uchakaev 3.8k Dec 29, 2022
Pytest-typechecker - Pytest plugin to test how type checkers respond to code

pytest-typechecker this is a plugin for pytest that allows you to create tests t

vivax 2 Aug 20, 2022
This project is used to send a screenshot by email of your MyUMons schedule using Selenium python lib (headless mode)

MyUMonsSchedule Use MyUMonsSchedule python script to send a screenshot by email (Gmail) of your MyUMons schedule. If you use it on Windows, take care

Pierre-Louis D'Agostino 6 May 12, 2022
Doing dirty (but extremely useful) things with equals.

Doing dirty (but extremely useful) things with equals. Documentation: dirty-equals.helpmanual.io Source Code: github.com/samuelcolvin/dirty-equals dir

Samuel Colvin 602 Jan 05, 2023
A Modular Penetration Testing Framework

fsociety A Modular Penetration Testing Framework Install pip install fsociety Update pip install --upgrade fsociety Usage usage: fsociety [-h] [-i] [-

fsociety-team 802 Dec 31, 2022
Plugin for generating HTML reports for pytest results

pytest-html pytest-html is a plugin for pytest that generates a HTML report for test results. Resources Documentation Release Notes Issue Tracker Code

pytest-dev 548 Dec 28, 2022
This repository contnains sample problems with test cases using Cormen-Lib

Cormen Lib Sample Problems Description This repository contnains sample problems with test cases using Cormen-Lib. These problems were made for the pu

Cormen Lib 3 Jun 30, 2022
Automated tests for OKAY websites in Python (Selenium) - user friendly version

Okay Selenium Testy Aplikace určená k testování produkčních webů společnosti OKAY s.r.o. Závislosti K běhu aplikace je potřeba mít v počítači nainstal

Viktor Bem 0 Oct 01, 2022
Baseball Discord bot that can post up-to-date scores, lineups, and home runs.

Sunny Day Discord Bot Baseball Discord bot that can post up-to-date scores, lineups, and home runs. Uses webscraping techniques to scrape baseball dat

Benjamin Hammack 1 Jun 20, 2022
A browser automation framework and ecosystem.

Selenium Selenium is an umbrella project encapsulating a variety of tools and libraries enabling web browser automation. Selenium specifically provide

Selenium 25.5k Jan 01, 2023
pytest splinter and selenium integration for anyone interested in browser interaction in tests

Splinter plugin for the pytest runner Install pytest-splinter pip install pytest-splinter Features The plugin provides a set of fixtures to use splin

pytest-dev 238 Nov 14, 2022
FakeDataGen is a Full Valid Fake Data Generator.

FakeDataGen is a Full Valid Fake Data Generator. This tool helps you to create fake accounts (in Spanish format) with fully valid data. Within this in

Joel GM 64 Dec 12, 2022
Pytest-rich - Pytest + rich integration (proof of concept)

pytest-rich Leverage rich for richer test session output. This plugin is not pub

Bruno Oliveira 170 Dec 02, 2022
Run ISP speed tests and save results

SpeedMon Automatically run periodic internet speed tests and save results to a variety of storage backends. Supported Backends InfluxDB v1 InfluxDB v2

Matthew Carey 9 May 08, 2022
Webscreener is a tool for mass web domains pentesting.

Webscreener is a tool for mass web domains pentesting. It is used to take snapshots for domains that is generated by a tool like knockpy or Sublist3r. It cuts out most of the pentesting time by scree

Seekurity 3 Jun 07, 2021
输入Google Hacking语句,自动调用Chrome浏览器爬取结果

Google-Hacking-Crawler 该脚本可输入Google Hacking语句,自动调用Chrome浏览器爬取结果 环境配置 python -m pip install -r requirements.txt 下载Chrome浏览器

Jarcis 4 Jun 21, 2022
Travel through time in your tests.

time-machine Travel through time in your tests. A quick example: import datetime as dt

Adam Johnson 373 Dec 27, 2022