Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"

Overview

Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021]

Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning" published in journal Computers in Industry 2021.

The same code is also an offical implementation of the method used in "End-to-end training of a two-stage neural network for defect detection" published in International Conference on Pattern Recognition 2020.

Citation

Please cite our Computers in Industry 2021 paper when using this code:

@article{Bozic2021COMIND,
  author = {Bo{\v{z}}i{\v{c}}, Jakob and Tabernik, Domen and 
  Sko{\v{c}}aj, Danijel},
  journal = {Computers in Industry},
  title = {{Mixed supervision for surface-defect detection: from weakly to fully supervised learning}},
  year = {2021}
}

How to run:

Requirements

Code has been tested to work on:

  • Python 3.8
  • PyTorch 1.6, 1.8
  • CUDA 10.0, 10.1
  • using additional packages as listed in requirements.txt

Datasets

You will need to download the datasets yourself. For DAGM and Severstal Steel Defect Dataset you will also need a Kaggle account.

  • DAGM available here.
  • KolektorSDD available here.
  • KolektorSDD2 available here.
  • Severstal Steel Defect Dataset available here.

For details about data structure refer to README.md in datasets folder.

Cross-validation splits, train/test splits and weakly/fully labeled splits for all datasets are located in splits directory of this repository, alongside the instructions on how to use them.

Using on other data

Refer to README.md in datasets for instructions on how to use the method on other datasets.

Demo - fully supervised learning

To run fully supervised learning and evaluation on all four datasets run:

./DEMO.sh
# or by specifying multiple GPU ids 
./DEMO.sh 0 1 2

Results will be written to ./results folder.

Replicating paper results

To replicate the results published in the paper run:

./EXPERIMENTS_COMIND.sh
# or by specifying multiple GPU ids 
./EXPERIMENTS_COMIND.sh 0 1 2

To replicate the results from ICPR 2020 paper:

@misc{Bozic2020ICPR,
    title={End-to-end training of a two-stage neural network for defect detection},
    author={Jakob Božič and Domen Tabernik and Danijel Skočaj},
    year={2020},
    eprint={2007.07676},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

run:

./EXPERIMENTS_ICPR.sh
# or by specifying multiple GPU ids 
./EXPERIMENTS_ICPR.sh 0 1 2

Results will be written to ./results-comind and ./results-icpr folders.

Usage of training/evaluation code

The following python files are used to train/evaluate the model:

  • train_net.py Main entry for training and evaluation
  • models.py Model file for network
  • data/dataset_catalog.py Contains currently supported datasets

In order to train and evaluate a network you can also use EXPERIMENTS_ROOT.sh, which contains several functions that will make training and evaluation easier for you. For more details see the file EXPERIMENTS_ROOT.sh.

Running code

Simplest way to train and evaluate a network is to use EXPERIMENTS_ROOT.sh, you can see examples of use in EXPERIMENTS_ICPR.sh and in EXPERIMENTS_COMIND.sh

If you wish to do it the other way you can do it by running train_net.py and passing the parameters as keyword arguments. Bellow is an example of how to train a model for a single fold of KSDD dataset.

python -u train_net.py  \
    --GPU=0 \
    --DATASET=KSDD \
    --RUN_NAME=RUN_NAME \
    --DATASET_PATH=/path/to/dataset \
    --RESULTS_PATH=/path/to/save/results \
    --SAVE_IMAGES=True \
    --DILATE=7 \
    --EPOCHS=50 \
    --LEARNING_RATE=1.0 \
    --DELTA_CLS_LOSS=0.01 \
    --BATCH_SIZE=1 \
    --WEIGHTED_SEG_LOSS=True \
    --WEIGHTED_SEG_LOSS_P=2 \
    --WEIGHTED_SEG_LOSS_MAX=1 \
    --DYN_BALANCED_LOSS=True \
    --GRADIENT_ADJUSTMENT=True \
    --FREQUENCY_SAMPLING=True \
    --TRAIN_NUM=33 \
    --NUM_SEGMENTED=33 \
    --FOLD=0

Some of the datasets do not require you to specify --TRAIN_NUM or --FOLD- After training, each model is also evaluated.

For KSDD you need to combine the results of evaluation from all three folds, you can do this by using join_folds_results.py:

python -u join_folds_results.py \
    --RUN_NAME=SAMPLE_RUN \
    --RESULTS_PATH=/path/to/save/results \
    --DATASET=KSDD 

You can use read_results.py to generate a table of results f0r all runs for selected dataset.
Note: The model is sensitive to random initialization and data shuffles during the training and will lead to different performance with different runs unless --REPRODUCIBLE_RUN is set.

Owner
ViCoS Lab
ViCoS Lab
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
Markup for note taking

Subtext: markup for note-taking Subtext is a text-based, block-oriented hypertext format. It is designed with note-taking in mind. It has a simple, pe

Gordon Brander 224 Jan 01, 2023
A tool for extracting text from scanned documents (via OCR), with user-defined post-processing.

The project is based on older versions of tesseract and other tools, and is now superseded by another project which allows for more granular control o

Maxim 32 Jul 24, 2022
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

ADAPET This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training". The model improves and simpl

Rakesh R Menon 138 Dec 26, 2022
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)

TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep

Yukang Wang 101 Dec 12, 2022
Awesome anomaly detection in medical images

A curated list of awesome anomaly detection works in medical imaging, inspired by the other awesome-* initiatives.

Kang Zhou 57 Dec 19, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
learn how to use Gesture Control to change the volume of a computer

Volume-Control-using-gesture In this project we are going to learn how to use Gesture Control to change the volume of a computer. We first look into h

Diwas Pandey 49 Sep 22, 2022
A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes A PyTorch implement of TextSnake: A Flexible Representation for Detecting

Prince Wang 417 Dec 12, 2022
Detect the mathematical formula from the given picture and the same formula is extracted and converted into the latex code

Mathematical formulae extractor The goal of this project is to create a learning based system that takes an image of a math formula and returns corres

6 May 22, 2022
Detect handwritten words in a text-line (classic image processing method).

Word segmentation Implementation of scale space technique for word segmentation as proposed by R. Manmatha and N. Srimal. Even though the paper is fro

Harald Scheidl 190 Jan 03, 2023
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022