Statistical tests for the sequential locality of graphs

Overview

Statistical tests for the sequential locality of graphs

You can assess the statistical significance of the sequential locality of an adjacency matrix (graph + vertex sequence) using sequential_locality.py.

This file also includes ORGM.py that generates an instance of the ordered random graph model (ORGM) [1] and spectral.py that yields an optimized vertex sequence based on the spectral ordering algorithms.

Please find Ref. [1] for the details of the statistical tests.

sequential_locality.py

sequential_locality.py executes statistical tests with respect to the sequential locality.

Simple example

import numpy as np
import igraph
import sequential_locality as seq

s = seq.SequentialLocality(
		g = igraph.Graph.Erdos_Renyi(n=20,m=80), 
		sequence = np.arange(20)
		)
s.H1()
{'H1': 1.0375,
 'z1': 0.5123475382979811,
 'H1 p-value (ER/ORGM)': 0.6957960998835012,
 'H1 p-value (random)': 0.7438939644617626,
 'bandwidth_opt': None}

Please find Demo.ipynb for more examples.

SequentialLocality

This is a class to be instantiated to assess the sequential locality.

Input parameters

Either g or edgelist must be provided as an input.

Parameter Value Default Description
g graph None Graph (undirected, unweighted, no self-loops) in igraph or graph-tool.
edgelist list of tuples None Edgelist as a list of tuples.
sequence 1-dim array None Array (list or ndarray) indicating the vertex ordering. If provided, the vertex indices in the graph will be replaced based on sequence . If sequence is None, the intrinsic vertex indices in the graph or edgelist will be used as the sequence .
format 'igraph' or 'graph-tool' 'igraph' Input graph format
simple Boolean True If True, the graph is assumed to be a simple graph, otherwise the graph is assumed to be a multigraph.

H1

This is a method that returns H1 and z1 test statistics and p-values of the input data.

Input parameters

Parameter Value Default Description
random_sequence 'analytical' or 'empirical' 'analytical' If 'analytical' is selected, the p-value based on the normal approximation will be returned for the test of vertex sequence H1 p-value (random). If 'empirical' is selected, the p-value based on random sequences specified by samples will be returned.
n_samples Integer 10,000 Number of samples to be drawn as a set of random sequences. This is used only when random_sequence = 'empirical'.
in_envelope Boolean False If False, the p-value based on the ER model will be returned. If True, the p-value based on the ORGM will be returned. That is, the matrix elements outside of the bandwidth r will be ignored.
r Integer None An integer between 1 and N-1. If provided, r will be used as the bandwidth when in_envelope=True.

Output parameters

Parameter Description
H1 H1 test statistic of the input data (graph & vertex sequence)
z1 z1 test statistic of the input data
H1 p-value (ER/ORGM) p-value under the null hypothesis of the ER random graph (when in_envelope=False) or the ORGM (when in_envelope=True).
H1 p-value (random) p-value under the null hypothesis of random sequences
bandwidth_opt Maximum likelihood estimate (MLE) of the bandwidth (when r=None in the input) or the input bandwidth r

HG

This is a method that returns HG and zG test statistics and p-values of the input data.

  • There is no in_envelope option for the test based on HG.
  • random_sequence = 'analytical' can be computationally demanding.

Input parameters

Parameter Value Default Description
random_sequence 'analytical' or 'empirical' 'empirical' If 'analytical' is selected, the p-value based on the normal approximation will be returned for the test of vertex sequence H1 p-value (random). If 'empirical' is selected, the p-value based on random sequences specified by samples will be returned.
n_samples Integer 10,000 Number of samples to be drawn as a set of random sequences. This is used only when random_sequence = 'empirical'.

Output parameters

Parameter Description
HG HG test statistic of the input data (graph & vertex sequence)
zG zG test statistic of the input data
HG p-value (ER) p-value under the null hypothesis of the ER random graph.
HG p-value (random) p-value under the null hypothesis of random sequences

ORGM.py

ORGM.py is a random graph generator. It generates an ORGM [1] instance that has a desired strength of sequentially lcoal structure.

Simple example

import ORGM as orgm

edgelist, valid = orgm.ORGM(
	N=20, M=80, bandwidth=10, epsilon=0.25
	)

Input parameters

Parameter Value Default Description
N Integer required input Number of vertices
M Integer required input Number of edges
bandwidth Integer required input Bandwidth of the ORGM
epsilon Float (in [0,1]) required input Density ratio between the adjacency matrix elements inside & outside of the envelope. When epsilon=1, the ORGM becomes a uniform model. When epsilon=0, the nonzero matrix elements are strictly confined in the envelope.
simple Boolean True If True, the graph is constrained to be simple. If False, the graph is allowed to have multiedges.

spectral.py

spectral.py is an implementation of the spectral ordering [2].

Simple example

import graph_tool.all as gt
import spectral

g_real = gt.collection.ns['karate/77']
inferred_sequence = spectral.spectral_sequence(
	g= g_real, 
	format='graph-tool'
	)
Parameter Value Default Description
g graph required input graph (undirected, unweighted, no self-loops) in igraph or graph-tool
normalized Boolean True Normalized Laplacian (True) vs unnormalized (combinatorial) Laplacian (False)
format 'igraph' or 'graph-tool' 'igraph' Input graph format

Citation

Please use Ref. [1] for the citation of the present code.

References

  • [1] Tatsuro Kawamoto and Teruyoshi Kobayashi, "Sequential locality of graphs and its hypothesis testing," arXiv:2111.11267 (2021).
  • [2] Chris Ding and Xiaofeng He, "Linearized Cluster Assignment via Spectral Ordering," Proceedings of the Twenty-First International Conference on Machine Learning (ICML) (2004).
Minimal example of getting Django + PyTest running on GitHub Actions

Minimal Django + Pytest + GitHub Actions example This minimal example shows you how you can runs pytest on your Django app on every commit using GitHu

Matt Segal 5 Sep 19, 2022
Declarative HTTP Testing for Python and anything else

Gabbi Release Notes Gabbi is a tool for running HTTP tests where requests and responses are represented in a declarative YAML-based form. The simplest

Chris Dent 139 Sep 21, 2022
Simple frontend TypeScript testing utility

TSFTest Simple frontend TypeScript testing utility. Installation Install webpack in your project directory: npm install --save-dev webpack webpack-cli

2 Nov 09, 2021
One-stop solution for HTTP(S) testing.

HttpRunner HttpRunner is a simple & elegant, yet powerful HTTP(S) testing framework. Enjoy! ✨ 🚀 ✨ Design Philosophy Convention over configuration ROI

HttpRunner 3.5k Jan 04, 2023
Donors data of Tamil Nadu Chief Ministers Relief Fund scrapped from https://ereceipt.tn.gov.in/cmprf/Interface/CMPRF/MonthWiseReport

Tamil Nadu Chief Minister's Relief Fund Donors Scrapped data from https://ereceipt.tn.gov.in/cmprf/Interface/CMPRF/MonthWiseReport Scrapper scrapper.p

Arunmozhi 5 May 18, 2021
Headless chrome/chromium automation library (unofficial port of puppeteer)

Pyppeteer Pyppeteer has moved to pyppeteer/pyppeteer Unofficial Python port of puppeteer JavaScript (headless) chrome/chromium browser automation libr

miyakogi 3.5k Dec 30, 2022
Descriptor Vector Exchange

Descriptor Vector Exchange This repo provides code for learning dense landmarks without supervision. Our approach is described in the ICCV 2019 paper

James Thewlis 74 Nov 29, 2022
AutoExploitSwagger is an automated API security testing exploit tool that can be combined with xray, BurpSuite and other scanners.

AutoExploitSwagger is an automated API security testing exploit tool that can be combined with xray, BurpSuite and other scanners.

6 Jan 28, 2022
Django test runner using nose

django-nose django-nose provides all the goodness of nose in your Django tests, like: Testing just your apps by default, not all the standard ones tha

Jazzband 880 Dec 15, 2022
It's a simple script to generate a mush on code forces, the script will accept the public problem urls only or polygon problems.

Codeforces-Sheet-Generator It's a simple script to generate a mushup on code forces, the script will accept the public problem urls only or polygon pr

Ahmed Hossam 10 Aug 02, 2022
Python version of the Playwright testing and automation library.

🎭 Playwright for Python Docs | API Playwright is a Python library to automate Chromium, Firefox and WebKit browsers with a single API. Playwright del

Microsoft 7.8k Jan 02, 2023
A twitter bot that simply replies with a beautiful screenshot of the tweet, powered by poet.so

Poet this! Replies with a beautiful screenshot of the tweet, powered by poet.so Installation git clone https://github.com/dhravya/poet-this.git cd po

Dhravya Shah 30 Dec 04, 2022
:game_die: Pytest plugin to randomly order tests and control random.seed

pytest-randomly Pytest plugin to randomly order tests and control random.seed. Features All of these features are on by default but can be disabled wi

pytest-dev 471 Dec 30, 2022
Playwright Python tool practice pytest pytest-bdd screen-play page-object allure cucumber-report

pytest-ui-automatic Playwright Python tool practice pytest pytest-bdd screen-play page-object allure cucumber-report How to run Run tests execute_test

moyu6027 11 Nov 08, 2022
Automates hiketop+ crystal earning using python and appium

hikepy Works on poco x3 idk about your device deponds on resolution Prerquests Android sdk java adb Setup Go to https://appium.io/ Download and instal

4 Aug 26, 2022
A toolbar overlay for debugging Flask applications

Flask Debug-toolbar This is a port of the excellent django-debug-toolbar for Flask applications. Installation Installing is simple with pip: $ pip ins

863 Dec 29, 2022
a plugin for py.test that changes the default look and feel of py.test (e.g. progressbar, show tests that fail instantly)

pytest-sugar pytest-sugar is a plugin for pytest that shows failures and errors instantly and shows a progress bar. Requirements You will need the fol

Teemu 963 Dec 28, 2022
A collection of benchmarking tools.

Benchmark Utilities About A collection of benchmarking tools. PYPI Package Table of Contents Using the library Installing and using the library Manual

Kostas Georgiou 2 Jan 28, 2022
pytest plugin for distributed testing and loop-on-failures testing modes.

xdist: pytest distributed testing plugin The pytest-xdist plugin extends pytest with some unique test execution modes: test run parallelization: if yo

pytest-dev 1.1k Dec 30, 2022
Percy visual testing for Python Selenium

percy-selenium-python Percy visual testing for Python Selenium. Installation npm install @percy/cli: $ npm install --save-dev @percy/cli pip install P

Percy 9 Mar 24, 2022