This is the source code of RPG (Reward-Randomized Policy Gradient)

Related tags

Text Data & NLPRPG
Overview

RPG (Reward-Randomized Policy Gradient)

Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (* equal contribution)

Website: https://sites.google.com/view/staghuntrpg

This is the source code for RPG (Reward-Randomized Policy Gradient), which is proposed in the paper "Discovering Diverse Multi-agent Strategic Behavior via Reward Randomization"(https://arxiv.org/abs/2103.04564).

1. Supported environments

1.1 Agar.io

Agar is a popular multi-player online game. Players control one or more cells in a Petri dish. The goal is to gain as much mass as possible by eating cells smaller than the player's cell while avoiding being eaten by larger ones. Larger cells move slower. Each player starts with one cell but can split a sufficiently large cell into two, allowing them to control multiple cells. The control is performed by mouse motion: all the cells of a player move towards the mouse position.

We transform the Free-For-All (FFA) mode of Agar (https://agar.io/) into an Reinforcement Learning (RL) environment and we believe it can be utilized as a new Multi-agent RL testbed for a wide range of problems, such as cooperation, team formation, intention modeling, etc. If you want to use Agar.io as your testbed, welcome to visit the agar repository: https://github.com/staghuntrpg/agar.

1.2 Grid World

  • Monster-Hunt In Monster-Hunt, there is a monster and two apples. The monster keeps moving towards its closest agent while apples are static. When a single agent meets the monster, it losses a penalty of 2; if two agents catch the monster at the same time, they both earn a bonus of 5. Eating an apple always gives an agent a bonus of 2. Whenever an apple is eaten or the monster meets an agent, the apple or the monster will respawn randomly. The monster may move over the apple during the chase, in this case, the agent will gain the sum of points if it catches the monster and the apple exactly.

  • Escalation In Escalation, two agents appear randomly and one grid lights up at the initialization. If two agents step on the lit grid simultaneously, each agent can gain 1 point, and the lit grid will go out with an adjacent grid lighting up. Both agents can gain 1 point again if they step on the next lit grid together. But if one agent steps off the path, the other agent will lose 0.9L points, where L is the current length of stepping together, and the game is over. Another option is that two agents choose to step off the path simultaneously, neither agent will be punished, and the game continues.

2. Usage

git clone https://github.com/staghuntrpg/RPG.git --recursive

Tips: Please don't forget the --recursive in the command, or else you will not have Agar.io environment in your fold.

This repository is separated into two folds, GridWorld and Agar, corresponding to the environments used in the paper "Discovering Diverse Multi-agent Strategic Behavior via Reward Randomization". The installation&training instructions can be found in the subfolders of each environment.

3. Publication

If you find this repository useful, please cite our paper:

@misc{tang2021discovering,
      title={Discovering Diverse Multi-Agent Strategic Behavior via Reward Randomization}, 
      author={Zhenggang Tang and Chao Yu and Boyuan Chen and Huazhe Xu and Xiaolong Wang and Fei Fang and Simon Du and Yu Wang and Yi Wu},
      year={2021},
      eprint={2103.04564},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
C.J. Hutto 3.8k Dec 30, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
Script and models for clustering LAION-400m CLIP embeddings.

clustering-laion400m Script and models for clustering LAION-400m CLIP embeddings. Models were fit on the first million or so image embeddings. A subje

Peter Baylies 22 Oct 04, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022