Google Search Results via SERP API pip Python Package

Overview

Google Search Results in Python

Package Build

This Python package is meant to scrape and parse search results from Google, Bing, Baidu, Yandex, Yahoo, Home depot, Ebay and more.. using SerpApi.

The following services are provided:

SerpApi provides a script builder to get you started quickly.

Installation

Python 3.7+

pip install google-search-results

Link to the python package page

Quick start

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffee", 
    "location": "Austin,Texas",
    "api_key": "<your secret api key>"
  })
result = search.get_dict()

This example runs a search about "coffee" using your secret api key.

The SerpApi service (backend)

  • searches on Google using the search: q = "coffee"
  • parses the messy HTML responses
  • return a standardizes JSON response The GoogleSearch class
  • Format the request
  • Execute GET http request against SerpApi service
  • Parse JSON response into a dictionary Et voila..

Alternatively, you can search:

  • Bing using BingSearch class
  • Baidu using BaiduSearch class
  • Yahoo using YahooSearch class
  • duckduckgo using DuckDuckGoSearch class
  • Ebay using EbaySearch class
  • Yandex using YandexSearch class
  • HomeDepot using HomeDepotSearch class
  • GoogleScholar using GoogleScholarSearch class
  • Youtube using YoutubeSearch class
  • Walmart using WalmartSearch
  • Apple App Store using AppleAppStoreSearch class
  • Naver using NaverSearch class

See the playground to generate your code.

Summary

Google Search API capability

Source code.

params = {
  "q": "coffee",
  "location": "Location Requested", 
  "device": "desktop|mobile|tablet",
  "hl": "Google UI Language",
  "gl": "Google Country",
  "safe": "Safe Search Flag",
  "num": "Number of Results",
  "start": "Pagination Offset",
  "api_key": "Your SERP API Key", 
  # To be match
  "tbm": "nws|isch|shop", 
  # To be search
  "tbs": "custom to be search criteria",
  # allow async request
  "async": "true|false",
  # output format
  "output": "json|html"
}

# define the search search
search = GoogleSearch(params)
# override an existing parameter
search.params_dict["location"] = "Portland"
# search format return as raw html
html_results = search.get_html()
# parse results
#  as python Dictionary
dict_results = search.get_dict()
#  as JSON using json package
json_results = search.get_json()
#  as dynamic Python object
object_result = search.get_object()

Link to the full documentation

see below for more hands on examples.

How to set SERP API key

You can get an API key here if you don't already have one: https://serpapi.com/users/sign_up

The SerpApi api_key can be set globally:

GoogleSearch.SERP_API_KEY = "Your Private Key"

The SerpApi api_key can be provided for each search:

query = GoogleSearch({"q": "coffee", "serp_api_key": "Your Private Key"})

Example by specification

We love true open source, continuous integration and Test Drive Development (TDD). We are using RSpec to test our infrastructure around the clock to achieve the best QoS (Quality Of Service).

The directory test/ includes specification/examples.

Set your api key.

export API_KEY="your secret key"

Run test

make test

Location API

from serpapi import GoogleSearch
search = GoogleSearch({})
location_list = search.get_location("Austin", 3)
print(location_list)

it prints the first 3 location matching Austin (Texas, Texas, Rochester)

[   {   'canonical_name': 'Austin,TX,Texas,United States',
        'country_code': 'US',
        'google_id': 200635,
        'google_parent_id': 21176,
        'gps': [-97.7430608, 30.267153],
        'id': '585069bdee19ad271e9bc072',
        'keys': ['austin', 'tx', 'texas', 'united', 'states'],
        'name': 'Austin, TX',
        'reach': 5560000,
        'target_type': 'DMA Region'},
        ...]

Search Archive API

The search result are stored in temporary cached. The previous search can be retrieve from the the cache for free.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
search_result = search.get_dictionary()
assert search_result.get("error") == None
search_id = search_result.get("search_metadata").get("id")
print(search_id)

Now let retrieve the previous search from the archive.

archived_search_result = GoogleSearch({}).get_search_archive(search_id, 'json')
print(archived_search_result.get("search_metadata").get("id"))

it prints the search result from the archive.

Account API

from serpapi import GoogleSearch
search = GoogleSearch({})
account = search.get_account()

it prints your account information.

Search Bing

from serpapi import BingSearch
search = BingSearch({"q": "Coffee", "location": "Austin,Texas"})
data = search.get_dict()

this code prints baidu search results for coffee as a Dictionary.

https://serpapi.com/bing-search-api

Search Baidu

from serpapi import BaiduSearch
search = BaiduSearch({"q": "Coffee"})
data = search.get_dict()

this code prints baidu search results for coffee as a Dictionary. https://serpapi.com/baidu-search-api

Search Yandex

from serpapi import YandexSearch
search = YandexSearch({"text": "Coffee"})
data = search.get_dict()

this code prints yandex search results for coffee as a Dictionary.

https://serpapi.com/yandex-search-api

Search Yahoo

from serpapi import YahooSearch
search = YahooSearch({"p": "Coffee"})
data = search.get_dict()

this code prints yahoo search results for coffee as a Dictionary.

https://serpapi.com/yahoo-search-api

Search Ebay

from serpapi import EbaySearch
search = EbaySearch({"_nkw": "Coffee"})
data = search.get_dict()

this code prints ebay search results for coffee as a Dictionary.

https://serpapi.com/ebay-search-api

Search Home depot

from serpapi import HomeDepotSearch
search = HomeDepotSearch({"q": "chair"})
data = search.get_dict()

this code prints home depot search results for chair as Dictionary.

https://serpapi.com/home-depot-search-api

Search Youtube

from serpapi import HomeDepotSearch
search = YoutubeSearch({"q": "chair"})
data = search.get_dict()

this code prints youtube search results for chair as Dictionary.

https://serpapi.com/youtube-search-api

Search Google Scholar

from serpapi import GoogleScholarSearch
search = GoogleScholarSearch({"q": "Coffee"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Walmart

from serpapi import WalmartSearch
search = WalmartSearch({"query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Youtube

from serpapi import YoutubeSearch
search = YoutubeSearch({"search_query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Apple Store

from serpapi import AppleAppStoreSearch
search = AppleAppStoreSearch({"term": "Coffee"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Naver

from serpapi import NaverSearch
search = NaverSearch({"query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Generic search with SerpApiClient

from serpapi import SerpApiClient
query = {"q": "Coffee", "location": "Austin,Texas", "engine": "google"}
search = SerpApiClient(query)
data = search.get_dict()

This class enables to interact with any search engine supported by SerpApi.com

Search Google Images

from serpapi import GoogleSearch
search = GoogleSearch({"q": "coffe", "tbm": "isch"})
for image_result in search.get_dict()['images_results']:
    link = image_result["original"]
    try:
        print("link: " + link)
        # wget.download(link, '.')
    except:
        pass

this code prints all the images links, and download image if you un-comment the line with wget (linux/osx tool to download image).

This tutorial covers more ground on this topic. https://github.com/serpapi/showcase-serpapi-tensorflow-keras-image-training

Search Google News

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffe",   # search search
    "tbm": "nws",  # news
    "tbs": "qdr:d", # last 24h
    "num": 10
})
for offset in [0,1,2]:
    search.params_dict["start"] = offset * 10
    data = search.get_dict()
    for news_result in data['news_results']:
        print(str(news_result['position'] + offset * 10) + " - " + news_result['title'])

this script prints the first 3 pages of the news title for the last 24h.

Search Google Shopping

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffe",   # search search
    "tbm": "shop",  # news
    "tbs": "p_ord:rv", # last 24h
    "num": 100
})
data = search.get_dict()
for shopping_result in data['shopping_results']:
    print(shopping_result['position']) + " - " + shopping_result['title'])

this script prints all the shopping results order by review order.

Google Search By Location

With SerpApi, we can build Google search from anywhere in the world. This code is looking for the best coffee shop per city.

from serpapi import GoogleSearch
for city in ["new york", "paris", "berlin"]:
  location = GoogleSearch({}).get_location(city, 1)[0]["canonical_name"]
  search = GoogleSearch({
      "q": "best coffee shop",   # search search
      "location": location,
      "num": 1,
      "start": 0
  })
  data = search.get_dict()
  top_result = data["organic_results"][0]["title"]

Batch Asynchronous Searches

We do offer two ways to boost your searches thanks to async parameter.

  • Blocking - async=false - it's more compute intensive because the search would need to hold many connections. (default)
  • Non-blocking - async=true - it's way to go for large amount of query submitted by batch (recommended)
# Operating system
import os

# regular expression library
import re

# safe queue (named Queue in python2)
from queue import Queue

# Time utility
import time

# SerpApi search
from serpapi import GoogleSearch

# store searches
search_queue = Queue()

# SerpApi search
search = GoogleSearch({
    "location": "Austin,Texas",
    "async": True,
    "api_key": os.getenv("API_KEY")
})

# loop through a list of companies
for company in ['amd', 'nvidia', 'intel']:
    print("execute async search: q = " + company)
    search.params_dict["q"] = company
    result = search.get_dict()
    if "error" in result:
        print("oops error: ", result["error"])
        continue
    print("add search to the queue where id: ", result['search_metadata'])
    # add search to the search_queue
    search_queue.put(result)

print("wait until all search statuses are cached or success")

# Create regular search
while not search_queue.empty():
    result = search_queue.get()
    search_id = result['search_metadata']['id']

    # retrieve search from the archive - blocker
    print(search_id + ": get search from archive")
    search_archived = search.get_search_archive(search_id)
    print(search_id + ": status = " +
          search_archived['search_metadata']['status'])

    # check status
    if re.search('Cached|Success',
                 search_archived['search_metadata']['status']):
        print(search_id + ": search done with q = " +
              search_archived['search_parameters']['q'])
    else:
        # requeue search_queue
        print(search_id + ": requeue search")
        search_queue.put(result)

        # wait 1s
        time.sleep(1)

print('all searches completed')

This code shows how to run searches asynchronously. The search parameters must have {async: True}. This indicates that the client shouldn't wait for the search to be completed. The current thread that executes the search is now non-blocking which allows to execute thousand of searches in seconds. The SerpApi backend will do the processing work. The actual search result is defer to a later call from the search archive using get_search_archive(search_id). In this example the non-blocking searches are persisted in a queue: search_queue. A loop through the search_queue allows to fetch individual search result. This process can be easily multithreaded to allow a large number of concurrent search requests. To keep thing simple, this example does only explore search result one at a time (single threaded).

See example.

Python object as a result

The search results can be automatically wrapped in dynamically generated Python object. This solution offers a more dynamic solution fully Oriented Object Programming approach over the regular Dictionary / JSON data structure.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
r = search.get_object()
assert type(r.organic_results), list
assert r.organic_results[0].title
assert r.search_metadata.id
assert r.search_metadata.google_url
assert r.search_parameters.q, "Coffee"
assert r.search_parameters.engine, "google"

Pagination using iterator

Let's collect links accross multiple search result pages.

# to get 2 pages
start = 0
end = 40
page_size = 10

# basic search parameters
parameter = {
  "q": "coca cola",
  "tbm": "nws",
  "api_key": os.getenv("API_KEY"),
  # optional pagination parameter
  #  the pagination method can take argument directly
  "start": start,
  "end": end,
  "num": page_size
}

# as proof of concept 
# urls collects
urls = []

# initialize a search
search = GoogleSearch(parameter)

# create a python generator using parameter
pages = search.pagination()
# or set custom parameter
pages = search.pagination(start, end, page_size)

# fetch one search result per iteration 
# using a basic python for loop 
# which invokes python iterator under the hood.
for page in pages:
  print(f"Current page: {page['serpapi_pagination']['current']}")
  for news_result in page["news_results"]:
    print(f"Title: {news_result['title']}\nLink: {news_result['link']}\n")
    urls.append(news_result['link'])
  
# check if the total number pages is as expected
# note: the exact number if variable depending on the search engine backend
if len(urls) == (end - start):
  print("all search results count match!")
if len(urls) == len(set(urls)):
  print("all search results are unique!")

Examples to fetch links with pagination: test file, online IDE

Error management

SerpAPI keeps error mangement very basic.

  • backend service error or search fail
  • client error

If it's a backend error, a simple message error is returned as string in the server response.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas", "api_key": "<secret_key>"})
data = search.get_json()
assert data["error"] == None

In some case, there is more details availabel in the data object.

If it's client error, then a SerpApiClientException is raised.

Change log

2021-12-22 @ 2.4.1

  • add more search engine
    • youtube
    • walmart
    • apple_app_store
    • naver
  • raise SerpApiClientException instead of raw string in order to follow Python guideline 3.5+
  • add more unit error tests for serp_api_client

2021-07-26 @ 2.4.0

  • add page size support using num parameter
  • add youtube search engine

2021-06-05 @ 2.3.0

  • add pagination support

2021-04-28 @ 2.2.0

  • add get_response method to provide raw requests.Response object

2021-04-04 @ 2.1.0

  • Add home depot search engine
  • get_object() returns dynamic Python object

2020-10-26 @ 2.0.0

  • Reduce class name to Search
  • Add get_raw_json

2020-06-30 @ 1.8.3

  • simplify import
  • improve package for python 3.5+
  • add support for python 3.5 and 3.6

2020-03-25 @ 1.8

  • add support for Yandex, Yahoo, Ebay
  • clean-up test

2019-11-10 @ 1.7.1

  • increase engine parameter priority over engine value set in the class

2019-09-12 @ 1.7

  • Change namespace "from lib." instead: "from serpapi import GoogleSearch"
  • Support for Bing and Baidu

2019-06-25 @ 1.6

  • New search engine supported: Baidu and Bing

Conclusion

SerpApi supports all the major search engines. Google has the more advance support with all the major services available: Images, News, Shopping and more.. To enable a type of search, the field tbm (to be matched) must be set to:

  • isch: Google Images API.
  • nws: Google News API.
  • shop: Google Shopping API.
  • any other Google service should work out of the box.
  • (no tbm parameter): regular Google search.

The field tbs allows to customize the search even more.

The full documentation is available here.

Owner
SerpApi
API to get search engine results with ease.
SerpApi
Erhalten Sie wichtige Warnmeldungen des Bevölkerungsschutzes für Gefahrenlagen wie zum Beispiel Gefahrstoffausbreitung oder Unwetter per Programmierschnittstelle.

nina-api Erhalten Sie wichtige Warnmeldungen des Bevölkerungsschutzes für Gefahrenlagen wie zum Beispiel Gefahrstoffausbreitung oder Unwetter per Prog

Bundesstelle für Open Data 68 Dec 19, 2022
DankMemer-Farmer - Autofarm Self-Bot for Discord bot Named Dankmemer.

DankMemer-Farmer Autofarm Self-Bot for Discord bot Named Dankmemer. Warning We are not responsible if you got banned, since "self-bots" outside of the

Mole 16 Dec 14, 2022
An open-source Discord bot that alerts your server when it's Funky Monkey Friday!

Funky-Monkey-Friday-Bot An open-source Discord bot that alerts your server when it's Funky Monkey Friday! Add it to your server here! https://discord.

Cole Swinford 0 Nov 10, 2022
Api REST para gerenciamento de cashback.

Documentação API para gerenciamento de cashback - MaisTODOS Features Em construção... Tecnologias utilizadas Back end Python 3.8.10 Django REST Framew

Alinne Grazielle 2 Jan 22, 2022
Trading bot - A Trading bot With Python

Trading_bot Trading bot intended for 1) Tracking current prices of tokens 2) Set

Tymur Kotkov 29 Dec 01, 2022
Send embeds using your discord personal account

Welcome to Embed Sender 👋 Send embeds using your discord personal account Install pip install -r requirements.txt Usage Put your discord token in ./

SkydenFly 11 Sep 07, 2022
A powerful bot to copy your google drive data to your team drive

⚛️ Clonebot - Heroku version ⚡ CloneBot is a telegram bot that allows you to copy folder/team drive to team drives. One of the main advantage of this

MsGsuite 269 Dec 23, 2022
A free tempmail api for your needs!

Tempmail A free tempmail api for your needs! Website · Report Bug · Request Feature Features Add your own private domains Easy to use documentation No

dropout 10 Oct 26, 2021
A script that takes what you're listening too on Spotify and sets it as your Nertivia custom status.

nertivia-spotify-listening-status A script that takes what you're listening too on Spotify and sets it as your Nertivia custom status. setup Install r

Ben Tettmar 2 Feb 03, 2022
Cryptocurrency Prices Telegram Bot For Python

Cryptocurrency Prices Telegram Bot How to Run Set your telegram bot token as environment variable TELEGRAM_BOT_TOKEN: export TELEGRAM_BOT_TOKEN=your_

Sina Nazem 3 Oct 31, 2022
A template that everyone can use for the start of their discord bot

Python Discord Bot Template This repository is a template that everyone can use for the start of their discord bot. When I first started creating my d

2 Nov 01, 2021
Scheduled Block Checker for Cardano Stakepool Operators

ScheduledBlocks Scheduled Block Checker for Cardano Stakepool Operators Lightweight and Portable Scheduled Blocks Checker for Current Epoch. No cardan

SNAKE (Cardano Stakepool) 4 Oct 18, 2022
Python3 based bittrex rest api wrapper

bittrex-rest-api This open source project was created to give an understanding of the Bittrex Rest API v1.1/v3.0 in pearl language. The sample file sh

4 Nov 15, 2022
A custom discord bot maker in python

custom-discord-bot-maker Sorry for using Translator. Each description may be inaccurate. how to use 1. Make new application at https://discord.com/dev

2 Nov 29, 2021
OpenEmu Discord Rich Presence provided with Python!

A simple application that provides your current OpenEmu game as an RPC state in Discord via PyPresence. How to use Unzip and open the latest x86_64 ve

Deltaion Lee 6 May 30, 2022
Implementation of the paper 'Sentence Bottleneck Autoencoders from Transformer Language Models'

Introduction This repository contains the code for the paper Sentence Bottleneck Autoencoders from Transformer Language Models by Ivan Montero, Nikola

Ivan Montero 14 Dec 28, 2022
Quickly edit your slack posts.

Lightning Edit Quickly edit your Slack posts. Heavily inspired by @KhushrajRathod's LightningDelete. Usage: Note: Before anything, be sure to head ove

Cole Wilson 14 Nov 19, 2021
SongBot2.0 With Python

SongBot2.0 Host 👨‍💻 Heroku 🚀 Manditary Vars BOT_TOKEN : Get It from @Botfather Special Feature Downloads Songs fastly and less errors as well as 0

Mr.Tanaji 5 Nov 19, 2021
Telegram Bot to Connect Strangers

Telegram Bot to Connect Strangers How to Run Set your telegram bot token as environment variable TELEGRAM_BOT_TOKEN: export TELEGRAM_BOT_TOKEN=your_t

PyTopia 12 Dec 24, 2022
New developed moderation discord bot by archisha

Monitor42 New developed moderation discord bot by αrchιshα#5518. Details Prefix: 42! Commands: Moderation Use 42!help to get command list. Invite http

Kamilla Youver 0 Jun 29, 2022