Google Search Results via SERP API pip Python Package

Overview

Google Search Results in Python

Package Build

This Python package is meant to scrape and parse search results from Google, Bing, Baidu, Yandex, Yahoo, Home depot, Ebay and more.. using SerpApi.

The following services are provided:

SerpApi provides a script builder to get you started quickly.

Installation

Python 3.7+

pip install google-search-results

Link to the python package page

Quick start

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffee", 
    "location": "Austin,Texas",
    "api_key": "<your secret api key>"
  })
result = search.get_dict()

This example runs a search about "coffee" using your secret api key.

The SerpApi service (backend)

  • searches on Google using the search: q = "coffee"
  • parses the messy HTML responses
  • return a standardizes JSON response The GoogleSearch class
  • Format the request
  • Execute GET http request against SerpApi service
  • Parse JSON response into a dictionary Et voila..

Alternatively, you can search:

  • Bing using BingSearch class
  • Baidu using BaiduSearch class
  • Yahoo using YahooSearch class
  • duckduckgo using DuckDuckGoSearch class
  • Ebay using EbaySearch class
  • Yandex using YandexSearch class
  • HomeDepot using HomeDepotSearch class
  • GoogleScholar using GoogleScholarSearch class
  • Youtube using YoutubeSearch class
  • Walmart using WalmartSearch
  • Apple App Store using AppleAppStoreSearch class
  • Naver using NaverSearch class

See the playground to generate your code.

Summary

Google Search API capability

Source code.

params = {
  "q": "coffee",
  "location": "Location Requested", 
  "device": "desktop|mobile|tablet",
  "hl": "Google UI Language",
  "gl": "Google Country",
  "safe": "Safe Search Flag",
  "num": "Number of Results",
  "start": "Pagination Offset",
  "api_key": "Your SERP API Key", 
  # To be match
  "tbm": "nws|isch|shop", 
  # To be search
  "tbs": "custom to be search criteria",
  # allow async request
  "async": "true|false",
  # output format
  "output": "json|html"
}

# define the search search
search = GoogleSearch(params)
# override an existing parameter
search.params_dict["location"] = "Portland"
# search format return as raw html
html_results = search.get_html()
# parse results
#  as python Dictionary
dict_results = search.get_dict()
#  as JSON using json package
json_results = search.get_json()
#  as dynamic Python object
object_result = search.get_object()

Link to the full documentation

see below for more hands on examples.

How to set SERP API key

You can get an API key here if you don't already have one: https://serpapi.com/users/sign_up

The SerpApi api_key can be set globally:

GoogleSearch.SERP_API_KEY = "Your Private Key"

The SerpApi api_key can be provided for each search:

query = GoogleSearch({"q": "coffee", "serp_api_key": "Your Private Key"})

Example by specification

We love true open source, continuous integration and Test Drive Development (TDD). We are using RSpec to test our infrastructure around the clock to achieve the best QoS (Quality Of Service).

The directory test/ includes specification/examples.

Set your api key.

export API_KEY="your secret key"

Run test

make test

Location API

from serpapi import GoogleSearch
search = GoogleSearch({})
location_list = search.get_location("Austin", 3)
print(location_list)

it prints the first 3 location matching Austin (Texas, Texas, Rochester)

[   {   'canonical_name': 'Austin,TX,Texas,United States',
        'country_code': 'US',
        'google_id': 200635,
        'google_parent_id': 21176,
        'gps': [-97.7430608, 30.267153],
        'id': '585069bdee19ad271e9bc072',
        'keys': ['austin', 'tx', 'texas', 'united', 'states'],
        'name': 'Austin, TX',
        'reach': 5560000,
        'target_type': 'DMA Region'},
        ...]

Search Archive API

The search result are stored in temporary cached. The previous search can be retrieve from the the cache for free.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
search_result = search.get_dictionary()
assert search_result.get("error") == None
search_id = search_result.get("search_metadata").get("id")
print(search_id)

Now let retrieve the previous search from the archive.

archived_search_result = GoogleSearch({}).get_search_archive(search_id, 'json')
print(archived_search_result.get("search_metadata").get("id"))

it prints the search result from the archive.

Account API

from serpapi import GoogleSearch
search = GoogleSearch({})
account = search.get_account()

it prints your account information.

Search Bing

from serpapi import BingSearch
search = BingSearch({"q": "Coffee", "location": "Austin,Texas"})
data = search.get_dict()

this code prints baidu search results for coffee as a Dictionary.

https://serpapi.com/bing-search-api

Search Baidu

from serpapi import BaiduSearch
search = BaiduSearch({"q": "Coffee"})
data = search.get_dict()

this code prints baidu search results for coffee as a Dictionary. https://serpapi.com/baidu-search-api

Search Yandex

from serpapi import YandexSearch
search = YandexSearch({"text": "Coffee"})
data = search.get_dict()

this code prints yandex search results for coffee as a Dictionary.

https://serpapi.com/yandex-search-api

Search Yahoo

from serpapi import YahooSearch
search = YahooSearch({"p": "Coffee"})
data = search.get_dict()

this code prints yahoo search results for coffee as a Dictionary.

https://serpapi.com/yahoo-search-api

Search Ebay

from serpapi import EbaySearch
search = EbaySearch({"_nkw": "Coffee"})
data = search.get_dict()

this code prints ebay search results for coffee as a Dictionary.

https://serpapi.com/ebay-search-api

Search Home depot

from serpapi import HomeDepotSearch
search = HomeDepotSearch({"q": "chair"})
data = search.get_dict()

this code prints home depot search results for chair as Dictionary.

https://serpapi.com/home-depot-search-api

Search Youtube

from serpapi import HomeDepotSearch
search = YoutubeSearch({"q": "chair"})
data = search.get_dict()

this code prints youtube search results for chair as Dictionary.

https://serpapi.com/youtube-search-api

Search Google Scholar

from serpapi import GoogleScholarSearch
search = GoogleScholarSearch({"q": "Coffee"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Walmart

from serpapi import WalmartSearch
search = WalmartSearch({"query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Youtube

from serpapi import YoutubeSearch
search = YoutubeSearch({"search_query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Apple Store

from serpapi import AppleAppStoreSearch
search = AppleAppStoreSearch({"term": "Coffee"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Naver

from serpapi import NaverSearch
search = NaverSearch({"query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Generic search with SerpApiClient

from serpapi import SerpApiClient
query = {"q": "Coffee", "location": "Austin,Texas", "engine": "google"}
search = SerpApiClient(query)
data = search.get_dict()

This class enables to interact with any search engine supported by SerpApi.com

Search Google Images

from serpapi import GoogleSearch
search = GoogleSearch({"q": "coffe", "tbm": "isch"})
for image_result in search.get_dict()['images_results']:
    link = image_result["original"]
    try:
        print("link: " + link)
        # wget.download(link, '.')
    except:
        pass

this code prints all the images links, and download image if you un-comment the line with wget (linux/osx tool to download image).

This tutorial covers more ground on this topic. https://github.com/serpapi/showcase-serpapi-tensorflow-keras-image-training

Search Google News

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffe",   # search search
    "tbm": "nws",  # news
    "tbs": "qdr:d", # last 24h
    "num": 10
})
for offset in [0,1,2]:
    search.params_dict["start"] = offset * 10
    data = search.get_dict()
    for news_result in data['news_results']:
        print(str(news_result['position'] + offset * 10) + " - " + news_result['title'])

this script prints the first 3 pages of the news title for the last 24h.

Search Google Shopping

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffe",   # search search
    "tbm": "shop",  # news
    "tbs": "p_ord:rv", # last 24h
    "num": 100
})
data = search.get_dict()
for shopping_result in data['shopping_results']:
    print(shopping_result['position']) + " - " + shopping_result['title'])

this script prints all the shopping results order by review order.

Google Search By Location

With SerpApi, we can build Google search from anywhere in the world. This code is looking for the best coffee shop per city.

from serpapi import GoogleSearch
for city in ["new york", "paris", "berlin"]:
  location = GoogleSearch({}).get_location(city, 1)[0]["canonical_name"]
  search = GoogleSearch({
      "q": "best coffee shop",   # search search
      "location": location,
      "num": 1,
      "start": 0
  })
  data = search.get_dict()
  top_result = data["organic_results"][0]["title"]

Batch Asynchronous Searches

We do offer two ways to boost your searches thanks to async parameter.

  • Blocking - async=false - it's more compute intensive because the search would need to hold many connections. (default)
  • Non-blocking - async=true - it's way to go for large amount of query submitted by batch (recommended)
# Operating system
import os

# regular expression library
import re

# safe queue (named Queue in python2)
from queue import Queue

# Time utility
import time

# SerpApi search
from serpapi import GoogleSearch

# store searches
search_queue = Queue()

# SerpApi search
search = GoogleSearch({
    "location": "Austin,Texas",
    "async": True,
    "api_key": os.getenv("API_KEY")
})

# loop through a list of companies
for company in ['amd', 'nvidia', 'intel']:
    print("execute async search: q = " + company)
    search.params_dict["q"] = company
    result = search.get_dict()
    if "error" in result:
        print("oops error: ", result["error"])
        continue
    print("add search to the queue where id: ", result['search_metadata'])
    # add search to the search_queue
    search_queue.put(result)

print("wait until all search statuses are cached or success")

# Create regular search
while not search_queue.empty():
    result = search_queue.get()
    search_id = result['search_metadata']['id']

    # retrieve search from the archive - blocker
    print(search_id + ": get search from archive")
    search_archived = search.get_search_archive(search_id)
    print(search_id + ": status = " +
          search_archived['search_metadata']['status'])

    # check status
    if re.search('Cached|Success',
                 search_archived['search_metadata']['status']):
        print(search_id + ": search done with q = " +
              search_archived['search_parameters']['q'])
    else:
        # requeue search_queue
        print(search_id + ": requeue search")
        search_queue.put(result)

        # wait 1s
        time.sleep(1)

print('all searches completed')

This code shows how to run searches asynchronously. The search parameters must have {async: True}. This indicates that the client shouldn't wait for the search to be completed. The current thread that executes the search is now non-blocking which allows to execute thousand of searches in seconds. The SerpApi backend will do the processing work. The actual search result is defer to a later call from the search archive using get_search_archive(search_id). In this example the non-blocking searches are persisted in a queue: search_queue. A loop through the search_queue allows to fetch individual search result. This process can be easily multithreaded to allow a large number of concurrent search requests. To keep thing simple, this example does only explore search result one at a time (single threaded).

See example.

Python object as a result

The search results can be automatically wrapped in dynamically generated Python object. This solution offers a more dynamic solution fully Oriented Object Programming approach over the regular Dictionary / JSON data structure.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
r = search.get_object()
assert type(r.organic_results), list
assert r.organic_results[0].title
assert r.search_metadata.id
assert r.search_metadata.google_url
assert r.search_parameters.q, "Coffee"
assert r.search_parameters.engine, "google"

Pagination using iterator

Let's collect links accross multiple search result pages.

# to get 2 pages
start = 0
end = 40
page_size = 10

# basic search parameters
parameter = {
  "q": "coca cola",
  "tbm": "nws",
  "api_key": os.getenv("API_KEY"),
  # optional pagination parameter
  #  the pagination method can take argument directly
  "start": start,
  "end": end,
  "num": page_size
}

# as proof of concept 
# urls collects
urls = []

# initialize a search
search = GoogleSearch(parameter)

# create a python generator using parameter
pages = search.pagination()
# or set custom parameter
pages = search.pagination(start, end, page_size)

# fetch one search result per iteration 
# using a basic python for loop 
# which invokes python iterator under the hood.
for page in pages:
  print(f"Current page: {page['serpapi_pagination']['current']}")
  for news_result in page["news_results"]:
    print(f"Title: {news_result['title']}\nLink: {news_result['link']}\n")
    urls.append(news_result['link'])
  
# check if the total number pages is as expected
# note: the exact number if variable depending on the search engine backend
if len(urls) == (end - start):
  print("all search results count match!")
if len(urls) == len(set(urls)):
  print("all search results are unique!")

Examples to fetch links with pagination: test file, online IDE

Error management

SerpAPI keeps error mangement very basic.

  • backend service error or search fail
  • client error

If it's a backend error, a simple message error is returned as string in the server response.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas", "api_key": "<secret_key>"})
data = search.get_json()
assert data["error"] == None

In some case, there is more details availabel in the data object.

If it's client error, then a SerpApiClientException is raised.

Change log

2021-12-22 @ 2.4.1

  • add more search engine
    • youtube
    • walmart
    • apple_app_store
    • naver
  • raise SerpApiClientException instead of raw string in order to follow Python guideline 3.5+
  • add more unit error tests for serp_api_client

2021-07-26 @ 2.4.0

  • add page size support using num parameter
  • add youtube search engine

2021-06-05 @ 2.3.0

  • add pagination support

2021-04-28 @ 2.2.0

  • add get_response method to provide raw requests.Response object

2021-04-04 @ 2.1.0

  • Add home depot search engine
  • get_object() returns dynamic Python object

2020-10-26 @ 2.0.0

  • Reduce class name to Search
  • Add get_raw_json

2020-06-30 @ 1.8.3

  • simplify import
  • improve package for python 3.5+
  • add support for python 3.5 and 3.6

2020-03-25 @ 1.8

  • add support for Yandex, Yahoo, Ebay
  • clean-up test

2019-11-10 @ 1.7.1

  • increase engine parameter priority over engine value set in the class

2019-09-12 @ 1.7

  • Change namespace "from lib." instead: "from serpapi import GoogleSearch"
  • Support for Bing and Baidu

2019-06-25 @ 1.6

  • New search engine supported: Baidu and Bing

Conclusion

SerpApi supports all the major search engines. Google has the more advance support with all the major services available: Images, News, Shopping and more.. To enable a type of search, the field tbm (to be matched) must be set to:

  • isch: Google Images API.
  • nws: Google News API.
  • shop: Google Shopping API.
  • any other Google service should work out of the box.
  • (no tbm parameter): regular Google search.

The field tbs allows to customize the search even more.

The full documentation is available here.

Owner
SerpApi
API to get search engine results with ease.
SerpApi
数字货币BTC量化交易系统-实盘行情服务器,虚拟币自动炒币-火币API-币安交易所-量化交易-网格策略。趋势跟踪策略,最简源码,可在线回测,一键部署,可定制的比特币量化交易框架,3年实盘检验!

huobi_intf 提供火币网的实时行情服务器(支持火币网所有交易对的实时行情),自带API缓存,可用于实盘交易和模拟回测。 行情数据,是一切量化交易的基础,可以获取1min、60min、4hour、1day等数据。数据能进行缓存,可以在多个币种,多个时间段查询的时候,查询速度依然很快。 服务框架

dev 258 Sep 20, 2021
=>|<= the MsgRoom bot for Windows 96

=|= bot A MsgRoom bot in Python 3 for Windows96.net. The bot joins as =|=, if parameter name_lasts is not true and default_name is =|=. The full

Larry Holst 2 Jun 07, 2022
Validate all your Customer IAM Policies against AWS Access Analyzer - Policy Validation

✅ Access Analyzer - Batch Policy Validator This script will analyze using AWS Access Analyzer - Policy Validation all your account customer managed IA

Victor GRENU 41 Dec 12, 2022
Python package for agilex robotics mobile base platform

This is Python API for Agilex Robotics Mobile base This is a python API for Can communication with Agilex Robotics Mobile base and controlling it. Sup

7 Sep 06, 2022
Tickergram is a Telegram bot to look up quotes, charts, general market sentiment and more.

Tickergram is a Telegram bot to look up quotes, charts, general market sentiment and more.

Alberto Ortega 25 Nov 26, 2022
Migration Manager (MM) is a very small utility that can list source servers in a target account and apply mass launch template modifications.

Migration Manager Migration Manager (MM) is a very small utility that can list source servers in a target account and apply mass launch template modif

Cody 2 Nov 04, 2021
An App to get Ko-Fi payment updates on Telegram.

Deployments. Heroku.com 🚀 Replit.com 🌀 Make sure your app runs 24*7 Zeet.co 💪 Use this :~ Get Bot token from @botfather 🤖 Get ID where you want to

Jainam Oswal 16 Nov 12, 2022
Infinity: a Twitter retweet bot that can be used by anyone

INSTAMATE Requires Firefox Instapy Python3 How To Use? Fork the repository Add your credentials in the bot.py file Save commits Clone your fork cd int

unofficialdxnny 3 Jun 23, 2022
BioThings API framework - Making high-performance API for biological annotation data

BioThings SDK Quick Summary BioThings SDK provides a Python-based toolkit to build high-performance data APIs (or web services) from a single data sou

BioThings 39 Jan 04, 2023
OpenQuake's Engine for Seismic Hazard and Risk Analysis

OpenQuake Engine The OpenQuake Engine is an open source application that allows users to compute seismic hazard and seismic risk of earthquakes on a g

Global Earthquake Model 281 Dec 21, 2022
Windows版本微信客户端(非网页版)自动化,可实现简单的发送、接收微信消息

wxauto Windows版本微信客户端自动化,可实现简单的发送、接收微信消息

357 Dec 29, 2022
Keypirinha plugin to install packages via Chocolatey

Keypiriniha Chocolatey This is a package for the fast keystroke launcher keypirinha (http://keypirinha.com/) It allows you to search & install package

Shadab Zafar 4 Nov 26, 2022
A simple language translator with python and google translate api

Language translator with python A simple language translator with python and google translate api Install pip and python 3.9. All the required depende

0 Nov 11, 2021
Telegram File Renamer Bot

RENAMER_BOT Telegram File Renamer Bot Configs TG_BOT_TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.o

Lntechnical 37 Dec 27, 2022
Python: Asynchronous client for the Tailscale API

Python: Asynchronous client for the Tailscale API Asynchronous client for the Tailscale API. About This package allows you to control and monitor Tail

Franck Nijhof 9 Nov 22, 2022
Um simples bot escrito em Python usando a lib pyTelegramBotAPI

Telegram Bot Python Um simples bot escrito em Python usando a lib pyTelegramBotAPI Instalação Windows: Download do Python 3 Aqui Download do ZIP do Có

Sr_Yuu 1 May 07, 2022
A python API for BSCScan (Binance Smart Chain Explorer), available on PyPI.

bscscan-python A complete Python API for BscScan.com, available on PyPI. Powered by BscScan.com APIs. This is a gently modified fork of the etherscan-

Panagiotis Kotsias 246 Dec 31, 2022
A Python SDK for connecting devices to Microsoft Azure IoT services

V2 - We are now GA! This repository contains code for the Azure IoT SDKs for Python. This enables python developers to easily create IoT device soluti

Microsoft Azure 381 Dec 30, 2022
Elon Muschioso is a Telegram bot that you can use to manage your computer from the phone.

elon Elon Muschioso is a Telegram bot that you can use to manage your computer from the phone. what does it do? Elon Muschio makes a connection from y

4 Feb 28, 2022
Slam Mirror Bot is a multipurpose Telegram Bot written in Python for mirroring files on the Internet to our beloved Google Drive.

Slam Mirror Bot is a multipurpose Telegram Bot written in Python for mirroring files on the Internet to our beloved Google Drive.

Abinash939 1 Oct 10, 2021