STEFANN: Scene Text Editor using Font Adaptive Neural Network

Overview

Getting Started  •   Training Networks  •   External Links  •   Citation  •   License



The official GitHub repository for the paper on STEFANN: Scene Text Editor using Font Adaptive Neural Network.


Getting Started

1. Installing Dependencies

Package Source Version Tested version
(Updated on April 14, 2020)
Python Conda 3.7.7 ✔️
Pip Conda 20.0.2 ✔️
Numpy Conda 1.18.1 ✔️
Requests Conda 2.23.0 ✔️
TensorFlow Conda 2.1.0 ✔️
Keras Conda 2.3.1 ✔️
Pillow Conda 7.0.0 ✔️
Colorama Conda 0.4.3 ✔️
OpenCV PyPI 4.2.0 ✔️
PyQt5 PyPI 5.14.2 ✔️

💥 Quick installation

Step 1: Install Git and Conda package manager (Miniconda / Anaconda)

Step 2: Update and configure Conda

conda update conda
conda config --set env_prompt "({name}) "

Step 3: Clone this repository and change directory to repository root

git clone https://github.com/prasunroy/stefann.git
cd stefann

Step 4: Create an environment and install depenpencies

On Linux and Windows

  • To create CPU environment: conda env create -f release/env_cpu.yml
  • To create GPU environment: conda env create -f release/env_gpu.yml

On macOS

  • To create CPU environment: conda env create -f release/env_osx.yml

💥 Quick test

Step 1: Download models and pretrained checkpoints into release/models directory

Step 2: Download sample images and extract into release/sample_images directory

stefann/
├── ...
├── release/
│   ├── models/
│   │   ├── colornet.json
│   │   ├── colornet_weights.h5
│   │   ├── fannet.json
│   │   └── fannet_weights.h5
│   ├── sample_images/
│   │   ├── 01.jpg
│   │   ├── 02.jpg
│   │   └── ...
│   └── ...
└── ...

Step 3: Activate environment

To activate CPU environment: conda activate stefann-cpu
To activate GPU environment: conda activate stefann-gpu

Step 4: Change directory to release and run STEFANN

cd release
python stefann.py

2. Editing Results 😆


Each image pair consists of the original image (Left) and the edited image (Right).


Training Networks

1. Downloading Datasets

Download datasets and extract the archives into datasets directory under repository root.

stefann/
├── ...
├── datasets/
│   ├── fannet/
│   │   ├── pairs/
│   │   ├── train/
│   │   └── valid/
│   └── colornet/
│       ├── test/
│       ├── train/
│       └── valid/
└── ...

📌 Description of datasets/fannet

This dataset is used to train FANnet and it consists of 3 directories: fannet/pairs, fannet/train and fannet/valid. The directories fannet/train and fannet/valid consist of 1015 and 300 sub-directories respectively, each corresponding to one specific font. Each font directory contains 64x64 grayscale images of 62 English alphanumeric characters (10 numerals + 26 upper-case letters + 26 lower-case letters). The filename format is xx.jpg where xx is the ASCII value of the corresponding character (e.g. "48.jpg" implies an image of character "0"). The directory fannet/pairs contains 50 image pairs, each corresponding to a random font from fannet/valid. Each image pair is horizontally concatenated to a dimension of 128x64. The filename format is id_xx_yy.jpg where id is the image identifier, xx and yy are the ASCII values of source and target characters respectively (e.g. "00_65_66.jpg" implies a transformation from source character "A" to target character "B" for the image with identifier "00").

📌 Description of datasets/colornet

This dataset is used to train Colornet and it consists of 3 directories: colornet/test, colornet/train and colornet/valid. Each directory consists of 5 sub-directories: _color_filters, _mask_pairs, input_color, input_mask and output_color. The directory _color_filters contains synthetically generated color filters of dimension 64x64 including both solid and gradient colors. The directory _mask_pairs contains a set of 64x64 grayscale image pairs selected at random from 1315 available fonts in datasets/fannet. Each image pair is horizontally concatenated to a dimension of 128x64. For colornet/train and colornet/valid each color filter is applied on each mask pair. This results in 64x64 image triplets of color source image, binary target image and color target image in input_color, input_mask and output_color directories respectively. For colornet/test one color filter is applied only on one mask pair to generate similar image triplets. With a fixed set of 100 mask pairs, 80000 colornet/train and 20000 colornet/valid samples are generated from 800 and 200 color filters respectively. With another set of 50 mask pairs, 50 colornet/test samples are generated from 50 color filters.

2. Training FANnet and Colornet

Step 1: Activate environment

To activate CPU environment: conda activate stefann-cpu
To activate GPU environment: conda activate stefann-gpu

Step 2: Change directory to project root

cd stefann

Step 3: Configure and train FANnet

To configure training options edit configurations section (line 40-72) of fannet.py
To start training: python fannet.py

☁️ Check this notebook hosted at Kaggle for an interactive demonstration of FANnet.

Step 4: Configure and train Colornet

To configure training options edit configurations section (line 38-65) of colornet.py
To start training: python colornet.py

☁️ Check this notebook hosted at Kaggle for an interactive demonstration of Colornet.

External Links

Project  •   Paper  •   Supplementary Materials  •   Datasets  •   Models  •   Sample Images


Citation

@InProceedings{Roy_2020_CVPR,
  title     = {STEFANN: Scene Text Editor using Font Adaptive Neural Network},
  author    = {Roy, Prasun and Bhattacharya, Saumik and Ghosh, Subhankar and Pal, Umapada},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month     = {June},
  year      = {2020}
}

License

Copyright 2020 by the authors

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Made with ❤️ and 🍕 on Earth.
Computer vision applications project (Flask and OpenCV)

Computer Vision Applications Project This project is at it's initial phase. This is all about the implementation of different computer vision techniqu

Suryam Thapa 1 Jan 26, 2022
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022
A python program to block out your face

Readme This is a small program I threw together in about 6 hours to block out your face. It probably doesn't work very well, so be warned. By default,

1 Oct 17, 2021
Program created with opencv that allows you to automatically count your repetitions on several fitness exercises.

Virtual partner of gym Description Program created with opencv that allows you to automatically count your repetitions on several fitness exercises li

1 Jan 04, 2022
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
かの有名なあの東方二次創作ソング、「bad apple!」のMVをPythonでやってみたって話

bad apple!! 内容 このプログラムは、bad apple!(feat. nomico)のPVをPythonを用いて再現しよう!という内容です。 実はYoutube並びにGithub上に似たようなプログラムがあったしなんならそっちの方が結構良かったりするんですが、一応公開しますw 使い方 こ

赤紫 8 Jan 05, 2023
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
Motion Detection Squid Game with OpenCV Python

*Motion Detection Squid Game with OpenCV Python i am newbie in python. In this project I made a simple game to follow the trend about the red light gr

Nayan 17 Nov 22, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
Markup for note taking

Subtext: markup for note-taking Subtext is a text-based, block-oriented hypertext format. It is designed with note-taking in mind. It has a simple, pe

Gordon Brander 224 Jan 01, 2023
CNN+LSTM+CTC based OCR implemented using tensorflow.

CNN_LSTM_CTC_Tensorflow CNN+LSTM+CTC based OCR(Optical Character Recognition) implemented using tensorflow. Note: there is No restriction on the numbe

Watson Yang 356 Dec 08, 2022
This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral) This repository contains the official PyTorch implementation

Shunsuke Saito 235 Dec 18, 2022
OCR system for Arabic language that converts images of typed text to machine-encoded text.

Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l

Hussein Youssef 144 Jan 05, 2023