Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

Overview

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

PWC

PWC

PWC

PWC

Official pytorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation
To appear in the Proceedings of the 29th ACM International Conference on Multimedia (ACM MM '21)

Teaser

Abstract

We propose Uncertainty Augmented Context Attention network (UACANet) for polyp segmentation which consider a uncertain area of the saliency map. We construct a modified version of U-Net shape network with additional encoder and decoder and compute a saliency map in each bottom-up stream prediction module and propagate to the next prediction module. In each prediction module, previously predicted saliency map is utilized to compute foreground, background and uncertain area map and we aggregate the feature map with three area maps for each representation. Then we compute the relation between each representation and each pixel in the feature map. We conduct experiments on five popular polyp segmentation benchmarks, Kvasir, CVC-ClinicDB, ETIS, CVC-ColonDB and CVC-300, and achieve state-of-the-art performance. Especially, we achieve 76.6% mean Dice on ETIS dataset which is 13.8% improvement compared to the previous state-of-the-art method.

1. Create environment

  • Create conda environment with following command conda create -n uacanet python=3.7
  • Activate environment with following command conda activate uacanet
  • Install requirements with following command pip install -r requirements.txt

2. Prepare datasets

  • Download dataset from following URL
  • Move folder data to the repository.
  • Folder should be ordered as follows,
|-- configs
|-- data
|   |-- TestDataset
|   |   |-- CVC-300
|   |   |   |-- images
|   |   |   `-- masks
|   |   |-- CVC-ClinicDB
|   |   |   |-- images
|   |   |   `-- masks
|   |   |-- CVC-ColonDB
|   |   |   |-- images
|   |   |   `-- masks
|   |   |-- ETIS-LaribPolypDB
|   |   |   |-- images
|   |   |   `-- masks
|   |   `-- Kvasir
|   |       |-- images
|   |       `-- masks
|   `-- TrainDataset
|       |-- images
|       `-- masks
|-- EvaluateResults
|-- lib
|   |-- backbones
|   |-- losses
|   `-- modules
|-- results
|-- run
|-- snapshots
|   |-- UACANet-L
|   `-- UACANet-S
`-- utils

3. Train & Evaluate

  • You can train with python run/Train.py --config configs/UACANet-L.yaml

  • You can generate prediction for test dataset with python run/Test.py --config configs/UACANet-L.yaml

  • You can evaluate generated prediction with python run/Eval.py --config configs/UACANet-L.yaml

  • You can also use python Expr.py --config configs/UACANet-L.yaml to train, generate prediction and evaluation in single command

  • (optional) Download our best result checkpoint from following URL for UACANet-L and UACANet-S.

4. Experimental Results

  • UACANet-S
dataset              meanDic    meanIoU    wFm     Sm    meanEm    mae    maxEm    maxDic    maxIoU    meanSen    maxSen    meanSpe    maxSpe
-----------------  ---------  ---------  -----  -----  --------  -----  -------  --------  --------  ---------  --------  ---------  --------
CVC-300                0.902      0.837  0.886  0.934     0.974  0.006    0.976     0.906     0.840      0.959     1.000      0.992     0.995
CVC-ClinicDB           0.916      0.870  0.917  0.940     0.965  0.008    0.968     0.919     0.873      0.942     1.000      0.991     0.995
Kvasir                 0.905      0.852  0.897  0.914     0.948  0.026    0.951     0.908     0.855      0.911     1.000      0.976     0.979
CVC-ColonDB            0.783      0.704  0.772  0.848     0.894  0.034    0.897     0.786     0.706      0.801     1.000      0.958     0.962
ETIS-LaribPolypDB      0.694      0.615  0.650  0.815     0.848  0.023    0.851     0.696     0.618      0.833     1.000      0.887     0.891
  • UACANet-L
dataset              meanDic    meanIoU    wFm     Sm    meanEm    mae    maxEm    maxDic    maxIoU    meanSen    maxSen    meanSpe    maxSpe
-----------------  ---------  ---------  -----  -----  --------  -----  -------  --------  --------  ---------  --------  ---------  --------
CVC-300                0.910      0.849  0.901  0.937     0.977  0.005    0.980     0.913     0.853      0.940     1.000      0.993     0.997
CVC-ClinicDB           0.926      0.880  0.928  0.943     0.974  0.006    0.976     0.929     0.883      0.943     1.000      0.992     0.996
Kvasir                 0.912      0.859  0.902  0.917     0.955  0.025    0.958     0.915     0.862      0.923     1.000      0.983     0.987
CVC-ColonDB            0.751      0.678  0.746  0.835     0.875  0.039    0.878     0.753     0.680      0.754     1.000      0.953     0.957
ETIS-LaribPolypDB      0.766      0.689  0.740  0.859     0.903  0.012    0.905     0.769     0.691      0.813     1.000      0.932     0.936
  • Qualitative Results

results

5. Citation

@misc{kim2021uacanet,
    title={UACANet: Uncertainty Augmented Context Attention for Polyp Semgnetaion},
    author={Taehun Kim and Hyemin Lee and Daijin Kim},
    year={2021},
    eprint={2107.02368},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
  • Conference version will be added soon.

6. Acknowledgement

  • Basic training strategy, datasets and evaluation methods are brought from PraNet. Especially for the evalutation, we made Python version based on PraNet's MatLab version and verified on various samples. Thanks for the great work!
Owner
Taehun Kim
Taehun Kim. Ph.D Candidate, POSTECH Intelligent Media Lab.
Taehun Kim
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022