A tool for light-duty persistent memoization of API calls

Overview

JSON Memoize

What is this?

json_memoize is a straightforward tool for light-duty persistent memoization, created with API calls in mind. It stores the arguments passed to a function and that function call's returned value in a dict, and writes that dict's contents to disk in a .json file.

Arguments at a glance

  • max_age - sets the maximum allowed age in seconds before a cached entry is considered invalid.
  • max_size - sets the maximum number of entries that can be stored in the cache.
  • force_update - overwrites cached values with fresh ones.
  • cache_folder_path - sets the location of the associated .json file.
  • app_name - if no cache_folder_path is provided, app_name is used to create a folder in the default user cache folder.
  • cache_file_name - manually sets the name of the cache file.

Basic Use

Import and add the decorator @memoize to memoize a function.

Warning: json_memoize stores arguments passed to memoized functions in a plain text format. Do not pass your API key, or any other sensitive information, to memoized functions.

Here's a slow api call:

def slow_api_call(arg_1:str, arg_2: str) -> str:
    response = requests.get(f"https://wowthistakesforever.slow/arg-1={arg_1}&arg-2={arg_2}")
    return response.text

Add the @memoize decorator to memoize it.

from json_memoize import memoize

@memoize
def slow_api_call(arg_1:str, arg_2: str) -> str:
    response = requests.get(f"https://wowthistakesforever.slow/arg-1={arg_1}&arg-2={arg_2}")
    return response.text

If the function is called again with the same arguments, the resulting value will be retrieved from the cache without executing the function.

max_age

If you don't want to keep data that's too old, you can set a max age.

@memoize(max_age=600)
def slow_api_call(arg_1:str, arg_2: str) -> str:
    ...

The age of an entry is determined from the time it was first added to the cache. If the difference between that time and the current time exceeds the max_age value, the cached value will be overwritten with a fresh one. Entries that have exceeded max_age will not be written to disk. If max_age is not set, cache entries will not expire. Note: max_age is in seconds. Consider creating variables for measures of time that are inconvenient or unclear when written in seconds, e.g.:

one_week = 604_800
@memoize(max_age=one_week)
    ...

max_size

If you don't want to cache too many entries, you can set a maximum number of entries to store.

@memoize(max_size=10)
def slow_api_call(arg_1:str, arg_2: str) -> str:
    ...

If max_size is set, json_memoize will delete cache entries from oldest to youngest until it meets the specified size limit before it saves the file to disk. As with max_age, the age of an entry is determined by the time at which it was first added to the cache, not when it was most recently used. Note: The size limit is only enforced when the cache file is being written. While the JsonCache object is live in memory, the limit can be exceeded.

force_update

If something in your ecosystem has changed and you want to force the cached values to be updated with fresh information, you can do that too.

@memoize(force_update=True)
def slow_api_call(arg_1:str, arg_2: str) -> str:
    ...

If force_update is True, all entries in the cache will be overwritten, even if they have not yet reached max_age.

Setting the Cache Folder

To reduce the likelihood of name collisions, json_memoize stores its cache files in named folders. There are multiple ways to specify where this folder is located.

Automatic folder creation using app_name

If a value is provided for app_name, json_memoize will use this value to name a new folder within the operating systems preferred user cache folder. e.g.:

@memoize(app_name='my_app') will create a folder structure like ".cache/my_app/"

Manual cache folder assignment

If a cache_folder argument is supplied to the decorator, it will store cache files in that folder. Note: if cache_folder is supplied, it will overrule app_name.

Default folder location

Warning: Not recommended!

If neither cache_folder nor app_name is provided, json_memoize will use its default folder name, yielding a folder structure like ".cache/json_memoize/"

This is not recommended, as intermingling cache files from multiple apps increases the risk of file name collisions, which could cause apps to behave unpredictably.

Naming Cache Files

By default, json_memoize will create each cache file using the name of the function being memoized, e.g.:

@memoize
def slow_api_call():
    ... 

This will create a file called "slow_api_call_cahce.json".

Setting a custom file name with cahce_file_name

If a value is provided for cache_file_name, json_memoize will instead use this value to name the cache file.

Storage and Performance Details

Storage

When a call is made to a memoized function, json_memoize will generate a string from the passed arguments, and use that string as the key in its internal cache dictionary. The value returned by the call is stored as the associated value. Writing this dict to disk is accomplished using json.dump(). Seperate cache files are made for each memoized function.

Warning: It is assumed here that @memoize will be invoked in situations where both the arguments and the returned value of a function have consistent, unambiguous string representations. Passing arguments with unreliable string representation will cause the cache to behave unpredictably. json_memoize will log a warning if it detects something that looks like a repr() output that points to a memory address in an incoming argument. Also, once again, do not pass security-relevant information to memoized functions.

Performance

json_memoize is intended to be performant relative to a slow API call, and has not been optimized further than that. If max_size is exceeded, the entries in the dict are sorted so the oldest ones can be dropped. Setting aside hard drive performance, this sorting operation is the most costly step of the process, and it occurs every time the cahce file is saved.

Control System Packer is a lightweight, low-level program to transform energy equations into the compact libraries for control systems.

Control System Packer is a lightweight, low-level program to transform energy equations into the compact libraries for control systems. Packer supports Python 🐍 , C 💻 and C++ 💻 libraries.

mirnanoukari 31 Sep 15, 2022
PyPI package for scaffolding out code for decision tree models that can learn to find relationships between the attributes of an object.

Decision Tree Writer This package allows you to train a binary classification decision tree on a list of labeled dictionaries or class instances, and

2 Apr 23, 2022
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Junhua Zou 7 Oct 20, 2022
Python plugin for Krita that assists with making python plugins for Krita

Krita-PythonPluginDeveloperTools Python plugin for Krita that assists with making python plugins for Krita Introducing Python Plugin developer Tools!

18 Dec 01, 2022
Ellipitical Curve Table Generator

Ellipitical-Curve-Table-Generator This script generates a table of elliptical po

Nishaant Goswamy 1 Jan 02, 2022
Master Duel Card Translator Project

Master Duel Card Translator Project A tool for translating card effects in Yu-Gi-Oh! Master Duel. Quick Start (for Chinese version only) Download the

67 Dec 23, 2022
A Unified Framework for Hydrology

Unified Framework for Hydrology The Python package unifhy (Unified Framework for Hydrology) is a hydrological modelling framework which combines inter

Unified Framefork for Hydrology - Community Organisation 6 Jan 01, 2023
CD for MachineLearnia

Codebase supporting my talk on CI/CD for MachineLearnia (Nov 12 2021) The dataset used is available here. The point of the talk is to demonstrate a si

0 Feb 23, 2022
Random Turkish name generator with realistic probabilities.

trnames Random Turkish name generator with realistic probabilities. Based on Trey Hunner's names package. Installation The package can be installed us

Kaan Öztürk 20 Jan 02, 2023
Home Assistant integration for spanish electrical data providers (e.g., datadis)

homeassistant-edata Esta integración para Home Assistant te permite seguir de un vistazo tus consumos y máximas potencias alcanzadas. Para ello, se ap

VMG 163 Jan 05, 2023
Este projeto se trata de uma análise de campanhas de marketing de uma empresa que vende acessórios para veículos.

Marketing Campaigns Este projeto se trata de uma análise de campanhas de marketing de uma empresa que vende acessórios para veículos. 1. Problema A em

Bibiana Prevedello 1 Jan 12, 2022
Self sustained producer-consumer(prosumer) policy study using Python and Gurobi

Prosumer Policy This project aims to model the optimum dispatch behaviour of households with PV and battery systems under different policy instrument

Tom Xu 3 Aug 31, 2022
This an Anki add on that automatically converts Notion notes into Anki flash cards. Currently in development!

NotionFlash This is an Anki add on in development that will allow automatically convert your Notion study notes into Anki flash cards. The Anki deck c

Neeraj Patel 10 Oct 07, 2022
Reload all Blender add-on modules

Reload-Addon This add-on creates a list of the modules that the add-on selected in the drop-down menu contains and reloads them with the keyboard shor

2 Dec 02, 2021
This is a Docker-based pipeline for preparing sextractor-ready multiwavelength images

Pipeline for creating NB422-detected (ODI) catalog The repository contains a Docker-based pipeline for preprocessing observational data. The pipeline

1 Sep 01, 2022
The Playwright Workshop for TAU: The Homecoming

tau-playwright-workshop This repository contains the instructions and example code for the Playwright workshop for TAU: The Homecoming on December 1,

Pandy Knight 134 Dec 30, 2022
Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Yueqian Liu 3 Oct 24, 2022
This repo is related to Google Coding Challenge, given to Bright Network Internship Experience 2021.

BrightNetworkUK-GCC-2021 This repo is related to Google Coding Challenge, given to Bright Network Internship Experience 2021. Language used here is py

Dareer Ahmad Mufti 28 May 23, 2022
Windows Task Manager with special features, written in Python.

Killer That damn Chrome ⬇ Download here · 👋 Join our discord Tired of trying to kill processes with the default Windows Task Manager? Selecting one b

Nathan Araújo 49 Jan 03, 2023
Automate the boilerplate while initializing your Python project

Rubric Automate the boilerplate while initializing your Python project Preface Rubric is an opinionated project initializer for Python. It assum

Redowan Delowar 23 Dec 16, 2022