Multi View Stereo on Internet Images

Overview

Evaluating MVS in a CPC Scenario

This repository contains the set of artficats used for the ENGN8601/8602 research project. The thesis emphasizes on the following aspects:

  • Evaluating and Analysing the performance of existing learning-based MVS networks on internet images or in a CPC scenario.
  • Proposing a novel mask estimation module and depth estimation (with depth alignment) framework to estimate depth values of foreground objects.
  • Fusing the depthmaps estimated by the proposed methodology to compute complete point clouds (including foreground objects)

Installation

Recommended: python 3.7.7, cudatoolkit 10.2.* and conda.

The python libraries required are provided in the requirements.txt file. You can install the environment and necessary modules as follows or use your own approach:

Create a new conda environment and activate it:

conda create -n mvs
conda activate mvs

Install requirements.txt and opencv & pytorch separately (make sure pip is installed):

pip install -r requirements.txt
pip install opencv-python
pip install torch==1.8.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

Data

Download the validation dataset extracted from MegaDepth dataset here and extract the all the images from the dataset to ref_images folder as subdirectories (create ref_images if it doesn't exist).

Usage

All the results have been included in the downloaded dataset already for ease of access to the results. The directory structure is given and explained as follows. The image subdirectories include reference images, npy files containing camera information, entropies, depthmaps (monocular, estimated and ground truth) etc.

  • All the images inside the ref_images directory contain a grid_outputs subdirectory which contain the best masks estimated for the reference image. This subdirectory also contains the plots with the .npy files for visualization.
  • All the images inside the ref_images directory contain ply and ply_gt subdirectories, which contain the 3D world points and .ply files depicting the estimated point cloud of that scene reconstructed by the proposed method.
  • The final_fused_scenes folder contains the point cloud generated by fusing multiple depthmaps obtained from different views of the same scene.

NOTE: You do not need to run the following steps in a sequence since required intermediate results are already provided in the images (such as entropy maps etc.), you can run any step directly.

1. Mask Estimation

Open the terminal and run the following command:

python masking.py

The 10 best masks with lowest binary cross entropy loss and IoU for each reference image is computed and saved inside a grid_outputs subdirectory inside each image directory. You can view the mask visualizations which are saved as .png. The masks are also saved as .npy files.

2. Calculating Error Metrics

To calculate the EPE, 1px and 3px errors between the estimated depthmaps and ground truth depthmaps, run the following command:

python calc_errors.py

3. 3D Reconstruction - Individual Point Clouds

To reconstruct ground truth point clouds and the estimated point clouds with foreground objects for each individual reference image, run the following command:

python pfm2ply_aligned.py                   # Point Clouds from Estimated Depthmaps (with foreground)
python pfm2ply_aligned_gt.py                # Point Clouds from Ground Truth Depthmaps

The point clouds will be saved in the ply and ply_gt image subdirectories respectively as .ply files along with the vertices of these point clouds saved as vertices.npy. This also generates the aligned absolute depthmap and saves the visualization along with the monocular depthmap estimated via the monocular depth estimation network inside the image directories.

4. Generating Scene Point Clouds

Since step 3 comptues individual point clouds, the next task is to merge the vertices of each individual point cloud to generate the point cloud for an entire scene. Run the following command:

python merge2ply.py

You can specify the set of images to be used for reconstructing each scene by editing the merge2ply file. All the scene point clouds are saved in final_fused_scenes folder.

Visualizations of Outputs

1. Mask Estimation

masks

2. 3D Reconstruction of Invidiual Depthmaps

3dr

3. Merged Point Clouds

3dr scenes

Supporting Repositories

I would like to give credit to the following repositories for assisting me in computing intermediate results necessary for the thesis:

Thank you!

Owner
Namas Bhandari
Machine Learning/Deep Learning/AI Enthusiast
Namas Bhandari
Allow you to create you own custom decentralize job management system.

ants Allow you to create you own custom decentralize job management system. Install $ git clone https://github.com/hvuhsg/ants.git Run monitor exampl

1 Feb 15, 2022
A streaming animation of all the edits to a given Wikipedia page.

WikiFilms! What is it? A streaming animation of all the edits to a given Wikipedia page. How it works. It works by creating a "virtual camera," which

Tal Zaken 2 Jan 18, 2022
Set up a sidechain for the XRPL quickly and easily

Sidechain Launch Kit Introduction This directory contains python scripts to tests and explore side chains. This document walks through the steps to se

Xpring Engineering 15 Dec 08, 2022
Заглушки .NET библиотек для IronPython

Код репозитория основан на ironpython-stubs. Выражаю gtalarico бесконечную благодарность за вклад в развитие сообщества разработчиков скриптов и плаги

12 Nov 23, 2022
A patch and keygen tools for typora.

A patch and keygen tools for typora.

Mason Shi 1.4k Apr 12, 2022
Monitoring of lake dynamics

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

10 Jun 23, 2022
Python script to combine the statistical results of a TOPAS simulation that was split up into multiple batches.

topas-merge-simulations Python script to combine the statistical results of a TOPAS simulation that was split up into multiple batches At the top of t

Sebastian Schäfer 1 Aug 16, 2022
A Lite Package focuses on making overwrite and mending functions easier and more flexible.

Overwrite Make Overwrite More flexible In Python A Lite Package focuses on making overwrite and mending functions easier and more flexible. Certain Me

2 Jun 15, 2022
A "multiclipboards" script for an efficient way to improve the original clipboards which are only able to save one string at a time

A "multiclipboards" script for an efficient way to improve the original clipboards which are only able to save one string at a time. Works on both Windows and Linux.

1 Jan 24, 2022
A minimalist starknet amm adapted from StarkWare's amm.

viscus • A minimalist starknet amm adapted from StarkWare's amm. Directory Structure contracts

Alucard 4 Dec 27, 2021
The presented desktop application was made to solve 1d schrodinger eqation

schrodinger_equation_1d_solver The presented desktop application was made to solve 1d schrodinger eqation. It implements Numerov's algorithm (step by

Artem Kashapov 2 Dec 29, 2021
Here, I have discuss the three methods of list reversion. The three methods are built-in method, slicing method and position changing method.

Three-different-method-for-list-reversion Here, I have discuss the three methods of list reversion. The three methods are built-in method, slicing met

Sachin Vinayak Dabhade 4 Sep 24, 2021
Xbox-Flood is for flood anything

Intruduction Installation Usage Installing Python 3 Wiki Getting Started Creating a Key Intruduction Xbox-Flood is for flooding messages (invitations

kayake 4 Feb 18, 2022
Building an Investment Portfolio for Day Trade with Python

Montando um Portfólio de Investimentos para Day Trade com Python Instruções: Para reproduzir o projeto no Google Colab, faça o download do repositório

Paula Campigotto 9 Oct 26, 2021
A student information management system in Python

Student-information-management-system 本项目是一个学生信息管理系统,这个项目是用Python语言实现的,也实现了图形化界面的显示,同时也实现了管理员端,学生端两个登陆入口,同时底层使用的是Redis做的数据持久化。 This project is a stude

liuyunfei 7 Nov 15, 2022
Cairo-math-64x61 - Fixed point 64.61 math library for Cairo / Starknet

Cairo Math 64x61 A fixed point 64.61 math library for Cairo & Starknet Signed 64

Influence 63 Dec 05, 2022
Class XII computer science project.

Computer Science Project — Class XII Kshitij Srivastava (XI – A) Introduction The aim of this project is to create a fully operational system for a me

Kshitij Srivastava 2 Jul 21, 2022
Lightweight and Modern kernel for VK Bots

This is the kernel for creating VK Bots written in Python 3.9

Yrvijo 4 Nov 21, 2021
A python mathematics module

A python mathematics module

Fayas Noushad 4 Nov 28, 2021
An implementation to rank your favourite songs from World of Walker

World-Of-Walker-Elo An implementation to rank your favourite songs from Alan Walker's 2021 album World of Walker. Uses the Elo rating system, which is

1 Nov 26, 2021