Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Overview

Relatório dos procedimentos executados e resultados obtidos.

Objetivos

  • Treinar um modelo para classificação de SPAM usando o dataset train_data.
  • Classificar a coluna SMS do dataset validation_data como “ok” ou “blocked” a partir do modelo treinado.

Explorando o dataset

A partir das amostras de texto presentes na colula “SMS” do dataset train_data, foram extraidas métricas que auxiliaram a entender os dados, como prepara-los e na difinição de critérios para a escolha do modelo adequado:

  • Número de amostras: total de amostras do datset.
  • Número de classes: total de classes no dataset na coluna “LABEL”.
  • Número de amostras por classe: número de exemplos por classe.
  • Mediana de palavras por amostra: mediana do número de palavras em uma unica amostra em todo dataset.
  • Distribuição de frequência: gráfico com a distribuição do número de ocorrências das 15 palavras mais frequêntes no dataset.
Métrica Valor
Número de amostras 6000
Número de classes 2
Número de amostras classe “ok” 4500
Número de amostras classe “blocked” 1500
Mediana de palavras por amostra 10

Tabela 1: train_data métricas.

distribuicao-orig.jpg

**Figura 1: Distribuição de frequência.** 
Exemplos de SMS não bloqueadas:

recuperamos seu usuario e senha de acesso no infojobs! usuario: [email protected]. senha: miguel28. obrigado! 

MARSH CORRETORA: Anna, boleto parc. 01 do Seg Auto com venc.: 28/12/2018 enviado para:[email protected] com esclarecimentos e instrucoes 

Host : RB_Bicanga Ip: 170.244.231.14 nao esta respondendo ao ping - 2019-04-19 22:30:23

----------------------------------------------------------------------------------------

Exemplos de SMS bloqueadas:

BOLETO REFERENTE AS PARCELAS EM ATRASO DO CONSÓRCIO PELO BB.COM VENCIMENTO PARA HOJE Ñ PODE HAVER QUEBRA NO ACORDO. BONATTO ADV 0800 606 3301.

050003DA0202|lcloud-apple-lnc.com/?iphone=VtBqROY .

BB INFORMA:VALIDE SUA SENHA E EVITE TRANSTORNO. ACESSE: www.Bbrasildesbloqueio.com/?7R8BQ8CI

Figura 2: Amostras de texto

Com base na Tabela 1, observa-se que existem 2 classes e que elas estão desbalanceadas, além disso, a distribuição no Gráfico 1 e a Figura 2 mostram que o texto contém letras maiúsculas, minúsculas, números, pontuação, links, stopwords e caracteres especiais.

Escolha do modelo

Os modelos podem ser amplamente classificados em duas categorias: os que usam informações de ordenação de palavras (modelos de sequência) e aqueles que apenas veem o texto como “sacos” (conjuntos) de palavras (modelos n-gram).

Os modelos de sequência incluem redes neurais convolucionais (CNNs), redes neurais recorrentes (RNNs) e suas variações. Os tipos de modelos n-gram incluem regressão logística, multi layer perceptrons simples MLPs ou redes neurais totalmente conectadas, gradient boosted trees e support vector machines.

Com base nas informações acima e nas métricas extraídas das amostras do dataset, levou-se em consideração a razão entre o número de amostras (S) e a mediana de palavras por amostra (W) como principal critério para a escolha do modelo. Quando o valor dessa razão é pequeno (<1500), MLPs alimentandas por n-grams possuem um bom desempenho.

Nesta análise, o valor S/W obtido no dataset train_data foi de 600 ( 6000 / 10) , por isso foi escolhido o modelo MPLs.

Preparando os dados

Os dados passaram pelas seguintes etapas:

  1. Pré-processamento: apesar de não ter influenciado significativamente no desempenho geral do modelo, foi incluida uma etpa de pré-processamento para remoção de acentuação, stopwords e o texto foi colocado em lowercase.
  2. Downsampling da maioria: as classes com a maioria de amostras foram balanceadas de acordo com as classes com o menor número de amostras. Testes executados, demostraram uma melhora nos resultados.
  3. Holdout: os dados foram divididos em subconjuntos mutuamente exclusivos, de treinamento e teste na proporção 70/30 respectivamente.
  4. Tokenizção e Vetorização: divisão do texto em tokens e conversão em vetores numéricos com TfidfVectorizer.
  5. Feature Selection: selcionado as top 20.000 features mais importantes para determinado rótulo com SelectKbest e f-classif.

Construção, treino e avaliação dos resultados do Modelo

Para construção do modelo MLPs, foram usados os frameworks TensorFlow e Keras. O modelo possui duas camadas Dense, adicionando algumas camadas Dropout para regularização (para evitar overfitting). Foi utilizado o callback EarlyStop para interromper o treinamento quando os validadion loss não diminuirem em dois passos consecutivos.

Os paramêtros para treinar o modelo foram:

learning_rate=1e-3,
epochs=1000,
batch_size=128,
layers=2,
units=64,
dropout_rate=0.2

Após executar a função de treinamento, o modelo convergiu em 29 épocas com uma perda média de 0.0079 e acurácia de ~99.5 % conforme a linha abaixo.

29/29 - 0s - loss: 0.0080 - acc: 0.9956 - 24ms/epoch - 844us/step
[0.00799043569713831, 0.995555579662323]

Na Figura 3a, observamos a relação entre a acurácia nas amostras de treino e teste e a evolução das épocas. Os resultados mostram que o modelo generaliza adequadamente. A Figura 3b, no mesmo sentido, mostra a diminuição dos erros à medida que a acurácia aumenta no decorrer das épocas.

mlp_training_and_validation.jpg

                **Figura 3a: Treino e Validação acurácia.                Figura 3b  Treino e Validação perda.**

Através da matriz de confusão e das métrica na Figura 4, podemos ter mais informações sobre o desempenho do modelo de classificação em questão. O modelo classificou corretamente 461 das 465 amostras não spam , obtendo Precision = 0,993, porém classficou erroneamente como não spam uma amostra que é spam, alcançando um Recall = 0,998.

cf_matrix.jpg

                                   **Figura 4: Matriz de confusão e métricas de classificação.**

Para entender os erros de classificação, foi usado o LIME. Através dele, é possível inspecionar as amostras classificadas incorretamente e entender quais termos foram mais determinantes para os erros. Na Figura 5, a amostra analisada é um falso negativo, algo indesejado quando se trata de segurança.

explicabilidade.jpg

**Figura 5:  Explicação do Lime para um falso negativo** 

Os termos 15, you, to, code, sent e with estão contribuindo para o modelo classificar como não spam e os termos http, itunes, com e link para classificar como spam. A partir de insights fornecidos pelo LIME, é possivel alterar algumas abodagens como pré-processamento, tokenização dentre outras coisas e com isso melhorar a qualidade do modelo.

Conclusão

Foi criado um modelo ****Multi Layer Perceptron (MLPs) usando frameworks como Keras e TensorFlow para classificar dados de SMS do dataset train_data. Após varios testes o modelo atingiu um bom resultado mostrando ser aplicável em dados reais.

O dataset validation_data foi rotulado e exportado. Os dataset rotulado, este relatório, bem como todo o código utilizado na análise estão disponíveis na pasta indicada no Google Drive.

Owner
André Mediote
André Mediote
A script to generate NFT art living on the Solana blockchain.

NFT Generator This script generates NFT art based on its desired traits with their specific rarities. It has been used to generate the full collection

Rude Golems 24 Oct 08, 2022
プレヤフHackUチーム「キャット・タン」が作成したアプリ「illustection」

cat_tongue_illustection プレヤフHackUチーム「キャット・タン」が作成した, プライバシー保護アプリ「illustection」です! デモ動画 https://youtu.be/z3I7LuB_i58 機能 アップロードされた画像をいい感じのイラストやの素材に置き換える(

4 Jul 03, 2021
Python Function to manage users via SCIM

Python Function to manage users via SCIM This script helps you to manage your v2 users. You can add and delete users or groups, add users to groups an

4 Oct 11, 2022
Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources.

Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources. It provides the necessary user stream data and order book data for trading in a

litepresence 5 May 08, 2022
Digitales Raumbuch

Helios Digitales Raumbuch Settings Moved to settings. Basic Commands Setting Up Your Users To create a normal user account, just go to Sign Up and fil

1 Nov 19, 2021
Todo-backend - Todo backend with python

Todo-backend - Todo backend with python

Julio C. Diaz 1 Jan 07, 2022
About Python's multithreading and GIL

About Python's multithreading and GIL

Souvik Ghosh 3 Mar 01, 2022
An esoteric programming language that supports concurrency, regex, and web requests.

The Hofstadter Esoteric Programming Language Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's La

Austin Henley 19 Dec 27, 2022
A very terrible python-based programming language that uses folders instead of text files

PYFolders by Lewis L. Foster PYFolders is a very terrible python-based programming language that uses folders instead of regular text files. In this r

Lewis L. Foster 5 Jan 08, 2022
Here You will Find CodeChef Challenge Solutions

Here You will Find CodeChef Challenge Solutions

kanishk kashyap 1 Sep 03, 2022
This module is for finding the execution time of a whole python program

exetime 3.8 This module is for finding the execution time of a whole program How to install $ pip install exetime Contents: General Information Instru

Saikat Das 4 Oct 18, 2021
All exercises done during the Python 3 course in the Video Course (World 1, 2 and 3)

Python3-cursoemvideo-exercises - All exercises done during the Python 3 course in the Video Course (World 1, 2 and 3)

Renan Barbosa 3 Jan 17, 2022
In this project, we'll be creating a virtual personal assistant for ourselves using our favorite programming language

In this project, we'll be creating a virtual personal assistant for ourselves using our favorite programming language, Python. We can perform several offline as well as online operations using the bo

Ashutosh Krishna 188 Jan 03, 2023
A carrot-based color palette you didn't know you needed.

A package to produce a carrot-inspired color palette for python/matplotlib. Install: pip install carrotColors Update: pip install --upgrade carrotColo

10 Sep 28, 2021
The Python agent for Apache SkyWalking

SkyWalking Python Agent SkyWalking-Python: The Python Agent for Apache SkyWalking, which provides the native tracing abilities for Python project. Sky

The Apache Software Foundation 149 Dec 12, 2022
"Cambio de monedas" Change-making problem with Python, dynamic programming best solutions,

Change-making-problem / Cambio de monedas Entendiendo el problema Dada una cantidad de dinero y una lista de denominaciones de monedas, encontrar el n

Juan Antonio Ayola Cortes 1 Dec 08, 2021
TMTC Commander Core

This commander application was first developed by KSat for the SOURCE project to test the on-board software but has evolved into a more generic tool for satellite developers to perform TMTC (Telemetr

robamu 8 Dec 14, 2022
CALPHAD tools for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria.

CALPHAD tools for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria.

pycalphad 189 Dec 13, 2022
Start and stop your NiceHash miners using this script.

NiceHash Mining Scheduler Use this script to schedule your NiceHash Miner(s). Electricity costs between 4-9pm are high in my area and I want NiceHash

SeaRoth 2 Sep 30, 2022
Retrying library for Python

Tenacity Tenacity is an Apache 2.0 licensed general-purpose retrying library, written in Python, to simplify the task of adding retry behavior to just

Julien Danjou 4.3k Jan 02, 2023