Learning to compose soft prompts for compositional zero-shot learning.

Overview

Compositional Soft Prompting (CSP)

Compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) without the overhead of fine-tuning the entire model.

Reference Paper: Learning to Compose Soft Prompts for Compositional Zero-Shot Learning

alt text

If you find CSP helpful, please cite our paper:

@article{csp2022,
  author = {Nayak, Nihal V. and Yu, Peilin and Bach, Stephen H.},
  title = {Learning to Compose Soft Prompts for Compositional Zero-Shot Learning},
  volume = {arXiv:2204.03574 [cs.LG]},
  year = {2022},
}

Setup

conda create --name clip python=3.7
conda activate clip
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip3 install ftfy regex tqdm scipy pandas
pip3 install git+https://github.com/openai/CLIP.git

Alternatively, you can use pip install -r requirements.txt to install all the dependencies.

Download Dataset

We experiment with three datasets: MIT-States, UT-Zappos, and C-GQA.

sh download_data.sh

If you already have setup the datasets, you can use symlink and ensure the following paths exist: data/<dataset> where <datasets> = {'mit-states', 'ut-zappos', 'cgqa'}.

Training

python -u train.py \
  --dataset mit-states \
  --model ViT-L/14 \
  --experiment_name csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-05 \
  --attr_dropout 0.3 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --gradient_accumulation_steps 2 \
  --context_length 8 \
  --save_path data/model/mit-states/sample_model \
  --save_every_n 1

You can replace --dataset with {mit-states, ut-zappos, cgqa}. The best hyperparameters are included in the paper.

Evaluation

We evaluate our models in two settings: closed-world and open-world.

Closed-World Evaluation

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 16 \
  --experiment_name csp

Open-World Evaluation

For our open-world evaluation, we compute the feasbility calibration and then evaluate on the dataset.

Feasibility Calibration

We use GloVe embeddings to compute the similarities between objects and attributes. Download the GloVe embeddings in the data directory:

cd data
wget https://nlp.stanford.edu/data/glove.6B.zip

Move glove.6B.300d.txt into data/glove.6B.300d.txt.

To compute feasibility calibration for each dataset, run the following command:

python -u datasets/feasibility.py --dataset mit-states

The feasibility similarities are saved at data/feasibility_<dataset>.pt.

Evaluation

The open-world evaluation with the thresholds (feasibility calibration).

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_5.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name czsl \
  --threshold <threshold> \
  --open_world

If <threshold> is None, then the model picks the best threshold on the validation set. We use the following thresholds:

Dataset Threshold
mit-states 0.4069159426
ut-zappos 0.5299109123
cgqa 0.49937106273612186

Note: We use 256GB of cpu memory to evaluate cgqa.

Generalization to Higher-Order Compositions

Evaluate the trained CSP vocabulary on the new AAO-MIT-States dataset.

python aao/evaluate_att_att_obj.py \
  --experiment_name csp \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt

We thank Andrew Delworth and Elise Carman for helping us annotate this dataset.

Generalization to Mixed Pretrained and Fine-Tuned Vocabulary

Ablation experiment to train and evaluate CSP with reduced fine-tuned vocabulary. We run experiment on the ut-zappos dataset.

Training

python -u mix/mix_train.py \
  --dataset ut-zappos \
  --model ViT-L/14 \
  --experiment_name mix_csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-04 \
  --attr_dropout 0.2 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --context_length 8 \
  --save_path data/model/ut-zappos/mix_train_model_0.25 \
  --save_every_n 5 \
  --attr_keep_ratio 0.25 \
  --gradient_accumulation_steps 2

We change the --attr_keep_ratio to {0.25, 0.50, 0.75}.

Evaluation

python -u mix/evaluate_mix_train.py \
  --dataset ut-zappos \
  --soft_embeddings data/model/ut-zappos/mix_train_model_0.25/soft_embeddings.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name csp

Credits

The project uses openly available model, code, and datasets. Please see the credits.

Owner
Bats Research
Bats Research
OLOP: One-Line & Obfuscated Python

OLOP: One-Line & Obfuscated Python This repository contains useful python modules for one-line and obfuscated python. pip install olop-ShadowLugia650

1 Jan 09, 2022
Python Toolkit containing different Cyber Attacks Tools

Helikopter Python Toolkit containing different Cyber Attacks Tools. Tools in Helikopter Toolkit 1. FattyNigger (PYTHON WORM) 2. Taxes (PYTHON PASS EXT

Saqlain Naqvi 22 Dec 04, 2022
A bare-bones POC container runner in python

pybox A proof-of-concept bare-bones container written in 50 lines of python code. Provides namespace isolation and resource limit control Usage Insta

Anirudh Haritas Murali 5 Jun 03, 2021
Script checks provided domains for log4j vulnerability

log4j Script checks provided domains for log4j vulnerability. A token is created with canarytokens.org and passed as header at request for a single do

Matthias Nehls 2 Dec 12, 2021
LittleBrother is a simple parental control application monitoring specific processes on Linux hosts to monitor and limit the play time of children.

Parental Control Application LittleBrother Overview LittleBrother is a simple parental control application monitoring specific processes (read "games"

40 Dec 21, 2022
Python library to remotely extract credentials on a set of hosts.

Python library to remotely extract credentials on a set of hosts.

Pixis 1.5k Dec 31, 2022
A Python Tool that uses Shodan API's to perform quick recon for vulnerabilities

Shodan Quick Recon A Python Tool that uses Shodan API's to perform quick recon for vulnerabilities Configuration You must edit the python code, and in

Black Hat Ethical Hacking 5 Aug 09, 2022
edgedressing leverages a Windows "feature" in order to force a target's Edge browser to open. This browser is then directed to a URL of choice.

edgedressing One day while experimenting with airpwn-ng, I noticed unexpected GET requests on the target node. The node in question happened to be a W

stryngs 43 Dec 23, 2022
Cve-2022-23131 - Cve-2022-23131 zabbix-saml-bypass-exp

cve-2022-23131 cve-2022-23131 zabbix-saml-bypass-exp replace [zbx_signed_session

东方有鱼名为咸 135 Dec 14, 2022
Microsoft Exchange Server SSRF漏洞(CVE-2021-26855)

Microsoft_Exchange_Server_SSRF_CVE-2021-26855 zoomeye dork:app:"Microsoft Exchange Server" 使用Seebug工具箱及pocsuite3编写的脚本Microsoft_Exchange_Server_SSRF_CV

conjojo 37 Nov 12, 2022
Gmail Accounts Hacking

gmail-hack Gmail Accounts Hacking Gemail-Hack python script for Hack gmail account brute force What is brute force attack? In brute force attack,scrip

Aryan 25 Nov 10, 2022
Wordlist attacks on Bitwarden data.json files

BitwardenDecryptBrute This is a slightly modified version of BitwardenDecrypt. In addition to the decryption this version can do wordlist attacks for

42 Nov 09, 2022
nuclei scanner for proxyshell ( CVE-2021-34473 )

Proxyshell-Scanner nuclei scanner for Proxyshell RCE (CVE-2021-34423,CVE-2021-34473,CVE-2021-31207) discovered by orange tsai in Pwn2Own, which affect

PikaChu 29 Dec 16, 2022
Password Manager is a simple Python project which helps users in managing their passwords in a easier way

Password Manager is a simple Python project which helps users in managing their passwords in a easier way

Manish Jalui 4 Sep 29, 2021
Dapunta Multi Brute Force Facebook - Crack Facebook With Login - Free

✭ DMBF CRACK Dibuat Dengan ❤️ Oleh Dapunta Author: - Dapunta Khurayra X ⇨ Fitur Login [✯] Login Token ⇨ Fitur Crack [✯] Crack Dari Teman, Public,

Dapunta ID 10 Oct 19, 2022
Yara Based Detection Engine for web browsers

Yobi Yara Based Detection for web browsers System Requirements Yobi requires python3 and and right now supports only firefox and other Gecko-based bro

imp0rtp3 44 Nov 20, 2022
Automatic SQL injection and database takeover tool

sqlmap sqlmap is an open source penetration testing tool that automates the process of detecting and exploiting SQL injection flaws and taking over of

sqlmapproject 25.7k Jan 08, 2023
spring-cloud-gateway-rce CVE-2022-22947

Spring Cloud Gateway Actuator API SpEL表达式注入命令执行(CVE-2022-22947) 1.installation pip3 install -r requirements.txt 2.Usage $ python3 spring-cloud-gateway

k3rwin 10 Sep 28, 2022
The Linux defender anti-virus software ported to work on CentOS Linux.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Sep 12, 2022
python写的一款免杀工具(shellcode加载器)BypassAV,国内杀软全过(windows denfend)

python写的一款免杀工具(shellcode加载器)BypassAV,国内杀软全过(windows denfend)

1frame 266 Jan 02, 2023