Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Overview

Blockchain

forthebadge forthebadge forthebadge

Learn Blockchains by Building One Yourself

Installation

  1. Make sure Python 3.6+ is installed.
  2. Install Flask Web Framework.
  3. Clone this repository
    $ git clone https://github.com/krvaibhaw/blockchain.git
  1. Change Directory
    $ cd blockchain
  1. Install requirements
    $ pip install requirements.txt
  1. Run the server:
    $ python blockchain.py 
  1. Head to the Web brouser and visit
    http://127.0.0.1:5000/

Introduction

Blockchain is a specific type of database. It differs from a typical database in the way it stores information; blockchains store data in blocks that are then chained together. As new data comes in it is entered into a fresh block. Once the block is filled with data it is chained onto the previous block, which makes the data chained together in chronological order. Different types of information can be stored on a blockchain but the most common use so far has been as a ledger for transactions.

What is Blockchain?

A blockchain is essentially a digital ledger of transactions that is duplicated and distributed across the entire network of computer systems on the blockchain. It is a growing list of records, called blocks, that are linked together using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a Merkle tree). The timestamp proves that the transaction data existed when the block was published in order to get into its hash.

As blocks each contain information about the block previous to it (by cryptographic hash of the previous block), they form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

How does it works?

Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger, where nodes collectively adhere to a protocol to communicate and validate new blocks. Although blockchain records are not unalterable as forks are possible, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance.

Why Blockchain?

  • Immutable: Blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

  • Decentralized: It doesn’t have any governing authority or a single person looking after the framework. Rather a group of nodes maintains the network making it decentralized. It means :

      -> Transparency
      -> User Control
      -> Less Prone to Breakdown
      -> Less chance of Failure.
      -> No Third-Party
    
  • Enhanced Security: If someone wants to corrupt the network, he/she would have to alter every data stored on every node in the network. There could be millions and millions of people, where everyone has the same copy of the ledger.

  • Distributed Ledgers: The ledger on the network is maintained by all other users on the system. This distributed computational power across the computers to ensure a better outcome. It ensures :

      -> No Malicious Changes
      -> Ownership of Verification
      -> Quick Response
      -> Managership
      -> No Extra Favors
    
  • Consensus: The architecture is cleverly designed, and consensus algorithms are at the core of this architecture. The consensus is a decision-making process for the group of nodes active on the network. The consensus is responsible for the network being trustless. Nodes might not trust each other, but they can trust the algorithms that run at the core of it. That’s why every decision on the network is a winning scenario for the blockchain.

  • True Traceability: With blockchain, the supply chain becomes more transparent than ever, as compared to traditional supply chain, where it is hard to trace items that can lead to multiple problems, including theft, counterfeit, and loss of goods.

Understanding the Program

Firstly, we defined the structure of our block, which contains, block index, timestamp of when it has been created, proof of work, along with previous hash i.e., the hash of previous block. In real case seanario along with these there are other contents such as a body or transaction list, etc.

    def createblock(self, proof, prevhash):
        
        # Defining the structure of our block
        block = {'index': len(self.chain) + 1,
                 'timestamp': str(datetime.datetime.now()),
                 'proof': proof,
                 'prevhash': prevhash}

        # Establishing a cryptographic link
        self.chain.append(block)
        return block

The genesis block is the first block in any blockchain-based protocol. It is the basis on which additional blocks are added to form a chain of blocks, hence the term blockchain. This block is sometimes referred to Block 0. Every block in a blockchain stores a reference to the previous block. In the case of Genesis Block, there is no previous block for reference.

    def __init__(self):
        
        self.chain = []
        
        # Creating the Genesis Block
        self.createblock(proof = 1, prevhash = "0")

Proof of Work(PoW) is the original consensus algorithm in a blockchain network. The algorithm is used to confirm the transaction and creates a new block to the chain. In this algorithm, minors (a group of people) compete against each other to complete the transaction on the network. The process of competing against each other is called mining. As soon as miners successfully created a valid block, he gets rewarded.

    def proofofwork(self, prevproof):
        newproof = 1
        checkproof = False

        # Defining crypto puzzle for the miners and iterating until able to mine it 
        while checkproof is False:
            op = hashlib.sha256(str(newproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] == "00000":
                checkproof = True
            else:
                newproof += 1
        
        return newproof

Chain validation is an important part of the blockchain, it is used to validate weather tha blockchain is valid or not. There are two checks performed.

First check, for each block check if the previous hash field is equal to the hash of the previous block i.e. to verify the cryptographic link.

Second check, to check if the proof of work for each block is valid according to problem defined in proofofwork() function i.e. to check if the correct block is mined or not.

    def ischainvalid(self, chain):
        prevblock = chain[0]   # Initilized to Genesis block
        blockindex = 1         # Initilized to Next block

        while blockindex < len(chain):

            # First Check : To verify the cryptographic link
            
            currentblock = chain[blockindex]
            if currentblock['prevhash'] != self.hash(prevblock):
                return False

            # Second Check : To check if the correct block is mined or not

            prevproof = prevblock['proof']
            currentproof = currentblock['proof']
            op = hashlib.sha256(str(currentproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] != "00000":
                return True

            prevblock = currentblock
            blockindex += 1

        return True

Feel free to follow along the code provided along with mentioned comments for
better understanding of the project, if any issues feel free to reach me out.

Contributing

Contributions are welcome!
Please feel free to submit a Pull Request.

Owner
Vaibhaw
A passionate thinker, techno freak, comic lover, a curious computer engineering student. Machine Learning, Artificial Intelligence, Linux, Web Development.
Vaibhaw
Tron Wallet (TRX) Crack Finder With Python Just 64 Line

TRXGEN Tron Wallet Finder and Crack With Python Tron Wallet (TRX) Crack Finder With Python Just 64 Line My tools [pycharm + anaconda3 + python3.8 + vi

MMDRZA 6 Dec 18, 2022
Bridge between L1 (Ethereum) and L2 (cheapETH)

The ETH chain and the cheapETH chain. We can assume the ETH chain has ~1000x more value than the cheapETH chain.

107 Oct 12, 2022
Python Cryptocurrency with stealth addresses

Python Cryptocurrency with stealth addresses. Goal is to have create a cryptocurency that hides transactions totally. I.E. Cant see ammount sent, to who, or from who.

3 Aug 04, 2022
That Hash will name that hash type! Identify MD5, SHA256 and 300+ other hashes Comes with

Call for translators! We're looking for translators to help translate this spec for everyone! Read this documentation in the following languages 한국어 中

All Contributors 6.8k Jan 05, 2023
FileGuard - File crypter and packing utility

FILEGUARD FILEGUARD is a file crypter and packing utility. This project was orig

11 Nov 28, 2022
Audit of classmate's smart contract in blockchain seminar

Solidity-contract-audit Audit of classmate's smart contract in blockchain seminar Assignment: The task was to create a complete audit, including unit

smrza 0 Feb 04, 2022
A cairo port for Rari Capital Vaults

crypts • Architecture contracts ├─ CryptFactory — "Factory for deploying Crypt contracts for any ERC20 token." ├─ Crypt — "Flexible, minimalist, and g

alucard 9 Sep 02, 2022
obj-encrypt is an encryption library based on the AES-256 algorithm.

obj-encrypt is an encryption library based on the AES-256 algorithm. It uses Python objects as the basic unit, which can convert objects into binary ciphertext and support decryption. Objects encrypt

Cyberbolt 2 May 04, 2022
Pythonic Smart Contract Language for the EVM

Introduction orfipy is a tool written in python/cython to extract ORFs in an extremely and fast and flexible manner. Other popular ORF searching tools

Vyper 4.4k Dec 30, 2022
En- and decrypting text-messages by creating a key with of the fibonacci-sequence

En- and decrypting text-messages by creating a key with of the fibonacci-sequence. This key helps to create mathematical functions, whose zeros should generates the encrypted message.

Pulsar 1 Feb 05, 2022
A tool that can encrypt python2 or python3 code with the given password and can reuse with that password

A tool that can encrypt python2 or python3 code with the given password and can reuse with that password

Md Rasel Bhuyan 3 Feb 28, 2022
SimpleWallet - Simple wallet for Bitcoin

Simple Wallet This is a basic python starter package to be used as a template fo

Mystic 1 Jan 08, 2022
Simple crypto & blockchain implementation written in Python

JaamoCoin - simple Python blockchain example This is a very simple blockchain example written in Python. Based on this tutorial: https://medium.com/co

Jaakko Alajoki 1 Jan 07, 2022
Simple python crypto bot to trade crypto on Binance based on RSI. Utilizing web sockets to get real-time prices

Py Crypto Bot Using Binance WebSocket API to get real-time price data for cryptocurrencies. Using the TA-Lib library to calculate the RSI and execute

Kennedy Ngugi Mwaura 15 Jan 04, 2023
BTCRecover is an open source wallet password and seed recovery tool.

BTCRecover is an open source wallet password and seed recovery tool. For seed based recovery, this is primarily useful in situations where you have lost/forgotten parts of your mnemonic, or have made

2 Aug 18, 2022
Certbot is EFF's tool to obtain certs from Let's Encrypt and (optionally) auto-enable HTTPS on your server.

Certbot is EFF's tool to obtain certs from Let's Encrypt and (optionally) auto-enable HTTPS on your server. It can also act as a client for any other CA that uses the ACME protocol.

29.5k Dec 31, 2022
Hide secret data within a digital image using good ol' terminal

pystego Hide secret data within a digital image using good ol' terminal Installation The recommended way for installing this package is using, python

Ayush Gupta 1 Jan 06, 2022
O BiscoitoDaSorte foi criado com o objetivo de estudar desenvolvimento de bots para Discord.

BiscoitoDaSorteBOT O BiscoitoDaSorte foi criado com o objetivo de estudar desenvolvimento de bots para Discord. BOT online e com o comando =sorte Requ

Jonas Carvalho 5 Mar 17, 2022
A workshop to build an NFT smart contract on the polygon blockchain

Polygon NFT Workshop This is an interactive workshop that guides you through the steps to deploy an NFT smart contract on the Polygon blockchain. By t

Banjo Obayomi 56 Oct 14, 2022
zhash is a simple Python tool which allows to create/crack hashes

zhash zhash is a simple python tool which allows you to crack/create hashes. Below are the list of supported algorithms that zhash can crack Supported

3 May 27, 2022