SQL for Humans™

Overview

Records: SQL for Humans™

https://travis-ci.org/kennethreitz/records.svg?branch=master

Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

https://farm1.staticflickr.com/569/33085227621_7e8da49b90_k_d.jpg

Just write SQL. No bells, no whistles. This common task can be surprisingly difficult with the standard tools available. This library strives to make this workflow as simple as possible, while providing an elegant interface to work with your query results.

Database support includes RedShift, Postgres, MySQL, SQLite, Oracle, and MS-SQL (drivers not included).


☤ The Basics

We know how to write SQL, so let's send some to our database:

import records

db = records.Database('postgres://...')
rows = db.query('select * from active_users')    # or db.query_file('sqls/active-users.sql')

Grab one row at a time:

>>> rows[0]
<Record {"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}>

Or iterate over them:

for r in rows:
    print(r.name, r.user_email)

Values can be accessed many ways: row.user_email, row['user_email'], or row[3].

Fields with non-alphanumeric characters (like spaces) are also fully supported.

Or store a copy of your record collection for later reference:

>>> rows.all()
[<Record {"username": ...}>, <Record {"username": ...}>, <Record {"username": ...}>, ...]

If you're only expecting one result:

>>> rows.first()
<Record {"username": ...}>

Other options include rows.as_dict() and rows.as_dict(ordered=True).

☤ Features

  • Iterated rows are cached for future reference.
  • $DATABASE_URL environment variable support.
  • Convenience Database.get_table_names method.
  • Command-line records tool for exporting queries.
  • Safe parameterization: Database.query('life=:everything', everything=42).
  • Queries can be passed as strings or filenames, parameters supported.
  • Transactions: t = Database.transaction(); t.commit().
  • Bulk actions: Database.bulk_query() & Database.bulk_query_file().

Records is proudly powered by SQLAlchemy and Tablib.

☤ Data Export Functionality

Records also features full Tablib integration, and allows you to export your results to CSV, XLS, JSON, HTML Tables, YAML, or Pandas DataFrames with a single line of code. Excellent for sharing data with friends, or generating reports.

>>> print(rows.dataset)
username|active|name      |user_email       |timezone
--------|------|----------|-----------------|--------------------------
model-t |True  |Henry Ford|[email protected]|2016-02-06 22:28:23.894202
...

Comma Separated Values (CSV)

>>> print(rows.export('csv'))
username,active,name,user_email,timezone
model-t,True,Henry Ford,[email protected],2016-02-06 22:28:23.894202
...

YAML Ain't Markup Language (YAML)

>>> print(rows.export('yaml'))
- {active: true, name: Henry Ford, timezone: '2016-02-06 22:28:23.894202', user_email: model-t@gmail.com, username: model-t}
...

JavaScript Object Notation (JSON)

>>> print(rows.export('json'))
[{"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}, ...]

Microsoft Excel (xls, xlsx)

with open('report.xls', 'wb') as f:
    f.write(rows.export('xls'))

Pandas DataFrame

>>> rows.export('df')
    username  active       name        user_email                   timezone
0    model-t    True Henry Ford model-t@gmail.com 2016-02-06 22:28:23.894202

You get the point. All other features of Tablib are also available, so you can sort results, add/remove columns/rows, remove duplicates, transpose the table, add separators, slice data by column, and more.

See the Tablib Documentation for more details.

☤ Installation

Of course, the recommended installation method is pipenv:

$ pipenv install records[pandas]
✨🍰✨

☤ Command-Line Tool

As an added bonus, a records command-line tool is automatically included. Here's a screenshot of the usage information:

Screenshot of Records Command-Line Interface.

☤ Thank You

Thanks for checking this library out! I hope you find it useful.

Of course, there's always room for improvement. Feel free to open an issue so we can make Records better, stronger, faster.

Owner
Kenneth Reitz
Software Engineer focused on abstractions, reducing cognitive overhead, and Design for Humans.
Kenneth Reitz
A Pythonic, object-oriented interface for working with MongoDB.

PyMODM MongoDB has paused the development of PyMODM. If there are any users who want to take over and maintain this project, or if you just have quest

mongodb 345 Dec 25, 2022
A Python DB-API and SQLAlchemy dialect to Google Spreasheets

Note: shillelagh is a drop-in replacement for gsheets-db-api, with many additional features. You should use it instead. If you're using SQLAlchemy all

Beto Dealmeida 185 Jan 01, 2023
PyPika is a python SQL query builder that exposes the full richness of the SQL language using a syntax that reflects the resulting query. PyPika excels at all sorts of SQL queries but is especially useful for data analysis.

PyPika - Python Query Builder Abstract What is PyPika? PyPika is a Python API for building SQL queries. The motivation behind PyPika is to provide a s

KAYAK 1.9k Jan 04, 2023
Dinamopy is a python helper library for dynamodb

Dinamopy is a python helper library for dynamodb. You can define your access patterns in a json file and can use dynamic method names to make operations.

Rasim Andıran 2 Jul 18, 2022
The Database Toolkit for Python

SQLAlchemy The Python SQL Toolkit and Object Relational Mapper Introduction SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that giv

SQLAlchemy 6.5k Jan 01, 2023
Asynchronous, fast, pythonic DynamoDB Client

AsyncIO DynamoDB Asynchronous pythonic DynamoDB client; 2x faster than aiobotocore/boto3/botocore. Quick start With httpx Install this library pip ins

HENNGE 48 Dec 18, 2022
Motor - the async Python driver for MongoDB and Tornado or asyncio

Motor Info: Motor is a full-featured, non-blocking MongoDB driver for Python Tornado and asyncio applications. Documentation: Available at motor.readt

mongodb 2.1k Dec 26, 2022
Pandas Google BigQuery

pandas-gbq pandas-gbq is a package providing an interface to the Google BigQuery API from pandas Installation Install latest release version via conda

Python for Data 345 Dec 28, 2022
DataStax Python Driver for Apache Cassandra

DataStax Driver for Apache Cassandra A modern, feature-rich and highly-tunable Python client library for Apache Cassandra (2.1+) and DataStax Enterpri

DataStax 1.3k Dec 25, 2022
A tutorial designed to introduce you to SQlite 3 database using python

SQLite3-python-tutorial A tutorial designed to introduce you to SQlite 3 database using python What is SQLite? SQLite is an in-process library that im

0 Dec 28, 2021
a small, expressive orm -- supports postgresql, mysql and sqlite

peewee Peewee is a simple and small ORM. It has few (but expressive) concepts, making it easy to learn and intuitive to use. a small, expressive ORM p

Charles Leifer 9.7k Dec 30, 2022
Sample code to extract data directly from the NetApp AIQUM MySQL Database

This sample code shows how to connect to the AIQUM Database and pull user quota details from it. AIQUM Requirements: 1. AIQUM 9.7 or higher. 2. An

1 Nov 08, 2021
Python PostgreSQL database performance insights. Locks, index usage, buffer cache hit ratios, vacuum stats and more.

Python PG Extras Python port of Heroku PG Extras with several additions and improvements. The goal of this project is to provide powerful insights int

Paweł Urbanek 35 Nov 01, 2022
Google Cloud Client Library for Python

Google Cloud Python Client Python idiomatic clients for Google Cloud Platform services. Stability levels The development status classifier on PyPI ind

Google APIs 4.1k Jan 01, 2023
Simplest SQL mapper in Python, probably

SQL MAPPER Basically what it does is: it executes some SQL thru a database connector you fed it, maps it to some model and gives to u. Also it can cre

2 Nov 07, 2022
Py2neo is a comprehensive toolkit for working with Neo4j from within Python applications or from the command line.

Py2neo v3 Py2neo is a client library and toolkit for working with Neo4j from within Python applications and from the command line. The core library ha

64 Oct 14, 2022
A Python wheel containing PostgreSQL

postgresql-wheel A Python wheel for Linux containing a complete, self-contained, locally installable PostgreSQL database server. All servers run as th

Michel Pelletier 71 Nov 09, 2022
A tool to snapshot sqlite databases you don't own

The core here is my first attempt at a solution of this, combining ideas from browser_history.py and karlicoss/HPI/sqlite.py to create a library/CLI tool to (as safely as possible) copy databases whi

Sean Breckenridge 10 Dec 22, 2022
Official Python low-level client for Elasticsearch

Python Elasticsearch Client Official low-level client for Elasticsearch. Its goal is to provide common ground for all Elasticsearch-related code in Py

elastic 3.8k Jan 01, 2023
Anomaly detection on SQL data warehouses and databases

With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300

Cuebook 171 Dec 18, 2022