MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF

Overview

MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF

Python class for converting (very fast) 3D Meshes/Surfaces to Raster DEMs (as Geotiff) or regular point cloud grids.

  • Supports gridding overlapping surfaces (e.g. highest, lowest, or first result)
  • Supports output to regular x,y,z grid
  • Supports output to Geotiff DEMs
  • Supports point colour averaging (and outputting colour raster to TIF with heightmap)

Example of output

Motivation

I worked on a project that used polygonal meshes and wanted to integrate parts that relied on raster computations. There was a need to shift between the two paradigms without having to wait too long for conversion.

I couldn't find anything fast enough in Python to seamlessly transition between mesh and rasters. This uses Numba for parallel loops and has been heavily optimised for computation speed (intended to compete with c++ benchmarks for similar computations).

The benchmarks below indicate speeds expected on an average PC (at least for 3D processing purposes).

Installation Instructions

With pip

Requires rasterio (which also needs gdal). These libraries are easier installed from pre-compiled wheels.

You will need rasterio and gdal. The easiest way to install these will be a pre-compiled versions for your platform from:

Python 3.7, Windows, amd64:

python -m pip install https://download.lfd.uci.edu/pythonlibs/w6tyco5e/GDAL-3.3.3-cp37-cp37m-win_amd64.whl
python -m pip install https://download.lfd.uci.edu/pythonlibs/w6tyco5e/rasterio-1.2.10-cp37-cp37m-win_amd64.whl

Python 3.8, Windows, amd64:

python -m pip install https://download.lfd.uci.edu/pythonlibs/w6tyco5e/GDAL-3.3.3-cp38-cp38-win_amd64.whl
python -m pip install https://download.lfd.uci.edu/pythonlibs/w6tyco5e/rasterio-1.2.10-cp38-cp38-win_amd64.whl

Python 3.9, Windows, amd64:

python -m pip install https://download.lfd.uci.edu/pythonlibs/w6tyco5e/GDAL-3.3.3-cp39-cp39-win_amd64.whl
python -m pip install https://download.lfd.uci.edu/pythonlibs/w6tyco5e/rasterio-1.2.10-cp39-cp39-win_amd64.whl

With those satisfied it should be fine to pip install this:

python -m pip install git+https://github.com/jeremybutlermaptek/mesh_to_geotiff

or

python -m pip install https://github.com/jeremybutlermaptek/mesh_to_geotiff/raw/main/dist/mesh_to_geotiff-0.1.0-py3-none-any.whl

When running examples, if you see this error: ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject

Update numpy to 1.2 and/or reinstall:

python -m pip install --upgrade --force-reinstall numpy

To create a wheel for this:

python setup.py bdist_wheel

Usage

See examples:

from mesh_to_geotiff import MeshObject, MeshToGeotiff
import trimesh
mesh = trimesh.load_mesh("input_mesh.obj", "obj")
# Not providing colours will default to green.. colours are optional
mesh_object = MeshObject(points=mesh.vertices, point_colours=None, facets=mesh.faces)
grid_surface = MeshToGeotiff(verbose=True)

print("Calculating grid")
print("Note: First time running requires numba to compile and cache - may add 15sec overhead once")
grid_surface.compute_grid(mesh_object, grid_spacing=1.0)

print("Creating tif outputs")
# Exporting RGB map is optional, shown for example purposes
saved_as_heights, save_as_rgba = grid_surface.save_geotiff("export_heightmap.tif", "export_rgbmap.tif")
print(f"Saved DEM to: {saved_as_heights}")
print(f"Saved RGB to: {save_as_rgba}")

valid_xyzs = grid_surface.grid_points[grid_surface.null_mask]
print(valid_xyzs)

Benchmarks

Note: Upon the first run, Numba must compile/cache. This can add 15~ seconds to the first-time run that will disappear after that. Benchmarks are after this has happened once.

Test surface:

  • Points: 194,114
  • Facets: 384,874
  • Surface area: 728,550m² (Bounding: approx 1,240m x 970m)

Initial surface

The output DEM looks like this: DEM tif output

Benchmark PC:

  • CPU: AMD Ryzen 5 3600
  • RAM: 64gb
  • GPU: GTX1060
  • OS: Windows 10 x64

Gridding to 1m:

  • Total time to grid: 0.82sec
  • Time to save geotiff: 0.06sec
  • Tif size: 1.6mb
  • Total raster cells: 1,185,532

1m grid

Gridding to 0.5m:

  • Total time to grid: 0.97sec
  • Time to save geotiff: 0.13sec
  • Tif size: 5.76mb
  • Total raster cells: 4,735,248

0.5m grid

Gridding to 0.1m:

  • Total time to grid: 4.93sec
  • Time to save geotiff: 6.3sec
  • Tif size: 75mb
  • Total raster cells: 118,259,020

0.1m grid

Gridding to 0.05m:

  • Total time to grid: 19.99sec
  • Time to save geotiff: 24.5sec
  • Tif size: 223mb
  • Total raster cells: 472,973,166

0.05m grid

Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
FastOCR is a desktop application for OCR API.

FastOCR FastOCR is a desktop application for OCR API. Installation Arch Linux fastocr-git @ AUR Build from AUR or install with your favorite AUR helpe

Bruce Zhang 58 Jan 07, 2023
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Extract tables from scanned image PDFs using Optical Character Recognition.

ocr-table This project aims to extract tables from scanned image PDFs using Optical Character Recognition. Install Requirements Tesseract OCR sudo apt

Abhijeet Singh 209 Dec 06, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
Text to QR-CODE

QR CODE GENERATO USING PYTHON Author : RAFIK BOUDALIA. Installation Use the package manager pip to install foobar. pip install pyqrcode Usage from tki

Rafik Boudalia 2 Oct 13, 2021
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
A simple OCR API server, seriously easy to be deployed by Docker, on Heroku as well

ocrserver Simple OCR server, as a small working sample for gosseract. Try now here https://ocr-example.herokuapp.com/, and deploy your own now. Deploy

Hiromu OCHIAI 541 Dec 28, 2022
A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports

A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports "with"-syntax.

Patrice Matz 0 Oct 30, 2021
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
Generic framework for historical document processing

dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty

Digital Humanities Laboratory 343 Dec 24, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Jan 05, 2023