Entropy-controlled contexts in Python

Overview

Build Status PyPI version Linux PyPI status

Twitter Follow Twitter URL

Python module ordered

ordered module is the opposite to random - it maintains order in the program.

import random 
x = 5
def increase():
    global x
    x += 7
def decrease():
    global x
    x -= 2

while x != 22:  
    random.choice([increase, decrease])()  
    # takes long time to exit ...

vs.

import random, ordered
x = 5
def increase():
    global x
    x += 7
def decrease():
    global x
    x -= 2

with ordered.orderedcontext(): # entropy-controlled context
    while x != 22: 
        random.choice([increase, decrease])()  
    # exits immediately with correct result
pass 

Ordered contexts are environments of controlled entropy. Contexts allow you to control which portions of the program will be guaranteed to exit with minimum state-changing steps. Raising any exceptions is also avoided by providing the correct "anti-random" choice() results.

Usage

ordered is a Python 3.8+ module. Use cases include automated decisionmaking, manufacturing control, robotics, automated design, automated programming and others.

You describe the world as Python objects and state-modifying methods. Defining an entropy-controlled context allows you to set up a goal for the system to satisfy all constraints and reach the desired state.

To define constraints you add assert statements in your code and inside ordered context. Then you add a function-calling loop while : random.choice()(random.choice()) . To exit the context the engine will have to call correct functions with correct arguments and end up with a staisfying state (see examples below).

Requirements

  • Linux (tested on Ubuntu 20.04+)
  • Python 3.8 in virtualenv
  • Recommended: PyPy compatible with Python 3.7+, installed globally.
# In Python3.8 virtualenv on Linux:
$ pip install ordered

Entropy Context Objects

# ... normal python code
with ordered.orderedcontext():  
    # ... entropy-controlled context, guaranteed to exit without exceptions
# ... normal python code
  • ordered.orderedcontext()

    Return a context manager and enter the context. SchedulingError will be raised if exit is not possible.

    Inside ordered context functions random.choice and ordered.choice are equivalent and no randomness is possible. If choice() is called without parameters then gc.get_objects() (all objects in Python heap) is considered by default.

    Optional returned context object allows to set parameters and limits such as timeout and max_states.

    Warning: not all Python features are currently supported and thus ordered might fail with internal exception. In this case a rewrite of user code is needed to remove the usage of unsupported features (such as I/O, lists and for loops.)

    Warning: ordered requires all entropy-controlled code to be type-hinted.

# ...
def decrease():
    global x
    assert x > 25  # when run inside context this excludes cases when x <= 25
                   # thus increasing amount of overall steps needed to complete
    x -= 2
# ...
with ordered.orderedcontext(): # entropy-controlled context
    while x < 21:  # exit if x >= 21
        random.choice([increase, decrease])()  
    assert x < 23  # only x == 21 or 22 matches overall

ordered.choice()

  • ordered.choice(objects=None)

    Choose and return the object that maintains maximum order in the program (minimum entropy). Any exception increases entropy to infinity so choices leading to exceptions will be avoided. Inside the entropy controlled context, random.choice is equivalent to ordered.choice (and also random.choices in the sense that it may return any amount of parameters when used as argument-generator in choice(*choice())).

    objects is a list of objects to choose from. If objects is None then gc.get_objects() is assumed by default.

    Warning: current implementation of while ... ordered loop is hard-coded to the form shown in examples. while loops with other statements than a single-line choice() are not supported. Add your code to other parts of context and/or functions and methods in your program

ordered.side_effect(lambda: )

  • ordered.side_effect(lamdba=[lambda function])

    Execute the supplied lambda function as a side-effect avoiding the compilation and subsequent effect analysis by ordered. This is useful when I/O is easier schdeuled right within the entropy-controlled part of the program or when you know that the code to be executed has no useful effect on the state of the problem of interest.

    side_effect may only be used when importred into global namespace using from ordered import side_effect

    from ordered import side_effect
    
    def move(t: Truck, l: Location):
        "Move truck to any adjacent location"
        assert l in t.location.adjacent
        t.locaiton = l
        t.distance += 1
        side_effect(lambda: print(f"This {__name__} code can have any Python construct and is not analysed. Current value is {t.distance}"))

Examples:

Object Oriented Code

Preferred way of implementing software models with ordered is object-oriented:

import ordered

class MyVars:
    x: int
    steps: int
    def __init__(self) -> None:
        self.x = 0
        self.steps = 0

    def plus_x(self):
        self.x += 3
        self.count_steps()

    def minus_x(self):
        self.x -= 2
        self.count_steps()
    
    def count_steps(self):
        self.steps += 1

m = MyVars()
m.x = 5
with ordered.orderedcontext():
    while m.x != 12:  
        ordered.choice()()  

print("Steps:", steps)

Pouring problem

A classic bottle pouring puzzle. You are in the possession of two bottles, one with a capacity of 3 litres and one with a capacity of 5 litres. Next to you is an infinitely large tub of water. You need to measure exactly 4 litres in one of the bottles. You are only allowed to entirely empty or fill the bottles. You can't fill them partially since there is no indication on the bottles saying how much liquid is in them. How do you measure exactly 4 litres?

from ordered import orderedcontext, choice
class Bottle:
    volume: int
    fill: int
    def __init__(self, volume: int):
        self.volume = volume
        self.fill = 0
    def fill_in(self):
        self.fill += self.volume
        assert self.fill == self.volume
    def pour_out(self, bottle: "Bottle"):
        assert self != bottle
        can_fit = bottle.volume - bottle.fill
        sf = self.fill
        bf = bottle.fill
        if self.fill <= can_fit:
            bottle.fill += self.fill
            self.fill = 0
            assert self.fill == 0
            assert bottle.fill == bf + sf
        else:
            bottle.fill += can_fit
            self.fill -= can_fit
            assert bottle.fill == bottle.volume
            assert self.fill == sf - can_fit
    def empty(self):
        self.fill = 0
b1 = Bottle(3)
b2 = Bottle(5)
with orderedcontext():
  while b2.fill != 4: 
      choice([Bottle])()
pass

NOTE: Be careful with importing from a module into global namespace and using choice()() without parameters in global scope. Current implementation load all global objects including the orderedcontext and choice and cause an error

Learning a function

ordered can be used

from ordered import choice, orderedcontext
from dataclasses import dataclass 

@dataclass
class Point:
   x: int
   y: int
   
data = [Point(1,1), Point(2,4), Point(3,9)]

# TODO: create_function creates a nonrandom function out of Node objects with `ordered.choice`
# TODO: run_function runs a node tree with a value and returns result
    
with orderedcontext():
    f = create_function()
    for point in data:
        assert run_function(f, point.x) == point.y
# context exit guarantees that create_function() constructs a correct function to describe input

# TODO: approximate function learning example

Work-in-progress functions

ordered.relaxedcontext()

Guaranteed to find an exit. Modifies the program if required.

Method ordered.def(heap_in_out: List)

Defines a function from a list of input and output heaps. The more examples of heaps are supplied, the better is the function.

Status

Although the system is in use by several industry organizations, ordered is under heavy development. Expect rapid changes in language support, performance and bugs.

Limitations

Python Language

Overall we have a relatively complete support of 'basic' use of object-oriented programming style. However, there are some hard limitaions and work-in-progress items that are yet to be documented.

Try to avoid multiline code as we have several places where line continuation may break during compilation.

Built-ins support is minimal. No I/O can be executed except for in explicit side_effect() calls.

None of the "ordered data structures" are supported: this includes list, dict and tuple. Use set or create your own data structures based on objects and classes.

Loops are not supported, including while and for besides the main while..choice() loop as described above - define your problem by creating functions that can be iteratively called by while.. choice() to overcome this.

Support of missing features is a current work in progress.

Integer Math

Math implementation is simple and works up to count 20-50 depedning on available resources. Future development includes switching to register-based math and monotonic-increase heuristics to support any numbers.

Symbolic Execution Performance

Current implementaion of Python code compilation is naive and doesn't scale well. The simpler your code, the faster it will compile. Future development includes implementing smarter symboic execution heuristics, pre-calculated database and statistical methods.

Model Universality

Current model can efficiently handle a limited set of problem classes and might require significantly more resources than would be needed with a more complete model. HyperC team provides more complete models for specific industry per request. Future development includes adding a universal pruning based on statistical methods as amount of data available to HyperC team grows.

Science behind ordered

ordered is based on translating a Python program to AI planning problem and uses a customized fast-downward as a backend. Additionally, we're implementing machine learning and pre-computed matrices on various levels to vastly improve performance on larger problems.

Contributing

For any questions and inquries please feel free contact Andrew Gree, [email protected].

Support

Module ordered is maintained by HyperC team, https://hyperc.com (CriticalHop Inc.) and is implemented in multiple production envorinments.

Investor Relations

HyperC is fundraising! Please contact at [email protected].

Owner
HyperC
Production-ready artificial Intelligence-based scheduling and planning ("AI planning")
HyperC
Package that allows for validate and sanitize of string values.

py.validator A library of string validators and sanitizers Insipired by validator.js Strings only This library validates and sanitizes strings only. P

Sanel Hadzini 22 Nov 08, 2022
Check the basic quality of any dataset

Data Quality Checker in Python Check the basic quality of any dataset. Sneak Peek Read full tutorial at Medium. Explore the app Requirements python 3.

MalaDeep 8 Feb 23, 2022
Tool to produce system call tables from Linux source code.

Syscalls Tool to generate system call tables from the linux source tree. Example The following will produce a markdown (.md) file containing the table

7 Jul 30, 2022
A python package containing all the basic functions and classes for python. From simple addition to advanced file encryption.

A python package containing all the basic functions and classes for python. From simple addition to advanced file encryption.

PyBash 11 May 22, 2022
Dill_tils is a package that has my commonly used functions inside it for ease of use.

DilllonB07 Utilities Dill_tils is a package that has my commonly used functions inside it for ease of use. Installation Anyone can use this package by

Dillon Barnes 2 Dec 05, 2021
A tool to create the basics of a project

Project-Scheduler Instalação Para instalar o Project Maker, você necessita está em um ambiente de desenvolvimento Linux ou wsl com alguma distro debia

2 Dec 17, 2021
Here, I find the Fibonacci Series using python

Fibonacci-Series-using-python Here, I find the Fibonacci Series using python Requirements No Special Requirements Contribution I have strong belief on

Sachin Vinayak Dabhade 4 Sep 24, 2021
A simple tool that updates your pubspec.yaml file, of a Flutter project, without altering the structure of your file.

A simple tool that updates your pubspec.yaml file, of a Flutter project, without altering the structure of your file.

3 Dec 10, 2021
Backup a folder to an another folder by using mirror update method.

Mirror Update Backup Backup a folder to an another folder by using mirror update method. How to use Install requirement pip install -r requirements.tx

1 Nov 21, 2022
SysInfo is an app developed in python which gives Basic System Info , and some detailed graphs of system performance .

SysInfo SysInfo is an app developed in python which gives Basic System Info , and some detailed graphs of system performance . Installation Download t

5 Nov 08, 2021
A simple python script to generate an iCalendar file for the university classes.

iCal Generator This is a simple python script to generate an iCalendar file for the university classes. Installation Clone the repository git clone ht

Foad Rashidi 2 Sep 01, 2022
Python code to generate and store certificates automatically , using names from a csv file

WOC-certificate-generator Python code to generate and store certificates automatically , using names from a csv file IMPORTANT In order to make the co

Google Developer Student Club - IIIT Kalyani 10 May 26, 2022
A repo for working with and building daos

DAO Mix DAO Mix About How to DAO No Code Tools Getting Started Prerequisites Installation Usage On-Chain Governance Example Off-Chain governance Examp

Brownie Mixes 86 Dec 19, 2022
A toolkit for writing and executing automation scripts for Final Fantasy XIV

XIV Scripter This is a tool for scripting out series of actions in FFXIV. It allows for custom actions to be defined in config.yaml as well as custom

Jacob Beel 1 Dec 09, 2021
ULID implementation for Python

What is this? This is a port of the original JavaScript ULID implementation to Python. A ULID is a universally unique lexicographically sortable ident

Martin Domke 158 Jan 04, 2023
Audio Steganography is a technique used to transmit hidden information by modifying an audio signal in an imperceptible manner.

Audio Steganography Audio Steganography is a technique used to transmit hidden information by modifying an audio signal in an imperceptible manner. Ab

Karan Yuvraj Singh 1 Oct 17, 2021
Create powerful passwords easily and with many options with this program

Password_Generator About the Program: You can create powerful passwords with this program with many options easily! Features: You can copy the generat

Sina.f 0 Jul 14, 2022
Python based utilities for interacting with digital multimeters that are built on the FS9721-LP3 chipset.

Python based utilities for interacting with digital multimeters that are built on the FS9721-LP3 chipset.

Fergus 1 Feb 02, 2022
Link-tree - Script that iterate over the links found in each page

link-tree Script that iterate over the links found in each page, recursively fin

Rodrigo Stramantinoli 2 Jan 05, 2022
Kanye West Lyrics Generator

aikanye Kanye West Lyrics Generator Python script for generating Kanye West lyrics Put kanye.txt in the same folder as the python script and run "pyth

4 Jan 21, 2022