Python document object mapper (load python object from JSON and vice-versa)

Overview

lupin is a Python JSON object mapper

Build Status

lupin is meant to help in serializing python objects to JSON and unserializing JSON data to python objects.

Installation

pip install lupin

Usage

lupin uses schemas to create a representation of a python object.

A schema is composed of fields which represents the way to load and dump an attribute of an object.

Define schemas

from datetime import datetime
from lupin import Mapper, Schema, fields as f


# 1) Define your models
class Thief(object):
    def __init__(self, name, stolen_items):
        self.name = name
        self.stolen_items = stolen_items


class Painting(object):
    def __init__(self, name, author):
        self.name = name
        self.author = author


class Artist(object):
    def __init__(self, name, birth_date):
        self.name = name
        self.birth_date = birth_date


# 2) Create schemas
artist_schema = Schema({
    "name": f.String(),
    "birthDate": f.DateTime(binding="birth_date", format="%Y-%m-%d")
}, name="artist")

painting_schema = Schema({
    "name": f.String(),
    "author": f.Object(artist_schema)
}, name="painting")

thief_schema = Schema({
    "name": f.String(),
    "stolenItems": f.List(painting_schema, binding="stolen_items")
}, name="thief")

# 3) Create a mapper and register a schema for each of your models you want to map to JSON objects
mapper = Mapper()

mapper.register(Artist, artist_schema)
mapper.register(Painting, painting_schema)
mapper.register(Thief, thief_schema)


# 4) Create some sample data
leonardo = Artist(name="Leonardo da Vinci", birth_date=datetime(1452, 4, 15))
mona_lisa = Painting(name="Mona Lisa", author=leonardo)
arsene = Thief(name="Arsène Lupin", stolen_items=[mona_lisa])

Dump objects

# use mapper to dump python objects
assert mapper.dump(leonardo) == {
    "name": "Leonardo da Vinci",
    "birthDate": "1452-04-15"
}

assert mapper.dump(mona_lisa) == {
    "name": "Mona Lisa",
    "author": {
        "name": "Leonardo da Vinci",
        "birthDate": "1452-04-15"
    }
}

assert mapper.dump(arsene) == {
    "name": "Arsène Lupin",
    "stolenItems": [
        {
            "name": "Mona Lisa",
            "author": {
                "name": "Leonardo da Vinci",
                "birthDate": "1452-04-15"
            }
        }
    ]
}

Load objects

# use mapper to load JSON data
data = {
    "name": "Mona Lisa",
    "author": {
        "name": "Leonardo da Vinci",
        "birthDate": "1452-04-15"
    }
}
painting = mapper.load(data, "painting")  # "painting" is the name of the schame you want to use
artist = painting.author

assert isinstance(painting, Painting)
assert painting.name == "Mona Lisa"

assert isinstance(artist, Artist)
assert artist.name == "Leonardo da Vinci"
assert artist.birth_date == datetime(1452, 4, 15)

Polymorphic lists

Sometimes a list can contain multiple type of objects. In such cases you will have to use a PolymorphicList, you will also need to add a key in the items schema to store the type of the object (you can use a Constant field).

Say that our thief has level up and has stolen a diamond.

class Diamond(object):
    def __init__(self, carat):
        self.carat = carat


mapper = Mapper()

# Register a schema for diamonds
diamond_schema = Schema({
    "carat": f.Field(),
    "type": f.Constant("diamond")  # this will be used to know which schema to used while loading JSON
}, name="diamond")
mapper.register(Diamond, diamond_schema)

# Change our painting schema in order to include a `type` field
painting_schema = Schema({
    "name": f.String(),
    "type": f.Constant("painting"),
    "author": f.Object(artist_schema)
}, name="painting")
mapper.register(Painting, painting_schema)

# Use `PolymorphicList` for `stolen_items`
thief_schema = Schema({
    "name": f.String(),
    "stolenItems": f.PolymorphicList(on="type",  # JSON key to lookup for the polymorphic type
                                     binding="stolen_items",
                                     schemas={
                                         "painting": painting_schema,  # if `type == "painting"` then use painting_schema
                                         "diamond": diamond_schema  # if `type == "diamond"` then use diamond_schema
                                     })
}, name="thief")
mapper.register(Thief, thief_schema)


diamond = Diamond(carat=20)
arsene.stolen_items.append(diamond)

# Dump object
data = mapper.dump(arsene)
assert data == {
    "name": "Arsène Lupin",
    "stolenItems": [
        {
            "name": "Mona Lisa",
            "type": "painting",
            "author": {
                "name": "Leonardo da Vinci",
                "birthDate": "1452-04-15"
            }
        },
        {
            "carat": 20,
            "type": "diamond"
        }
    ]
}

# Load data
thief = mapper.load(data, "thief")
assert isinstance(thief.stolen_items[0], Painting)
assert isinstance(thief.stolen_items[1], Diamond)

Validation

Lupin provides a set of builtin validators, you can find them in the lupin/validators folder.

While creating your schemas you can assign validators to the fields. Before loading a document lupin will validate its format. If one field is invalid, an InvalidDocument is raised with all the error detected in the data.

Example :

from lupin import Mapper, Schema, fields as f, validators as v
from lupin.errors import InvalidDocument, InvalidLength
from models import Artist

mapper = Mapper()

artist_schema = Schema({
    "name": f.String(validators=v.Length(max=10)),
}, name="artist")
mapper.register(Artist, artist_schema)

data = {
    "name": "Leonardo da Vinci"
}

try:
    mapper.load(data, artist_schema, allow_partial=True)
except InvalidDocument as errors:
    error = errors[0]
    assert isinstance(error, InvalidLength)
    assert error.path == ["name"]

Current validators are :

  • DateTimeFormat (validate that value is a valid datetime format)
  • Equal (validate that value is equal to a predefined one)
  • In (validate that a value is contained in a set of value)
  • Length (validate the length of a value)
  • Match (validate the format of a value with a regex)
  • Type (validate the type of a value, this validator is already included in all fields to match the field type)
  • URL (validate an URL string format)
  • IsNone (validate that value is None)
  • Between (validate that value belongs to a range)

Combination

You can build validators combinations using the & and | operator.

Example :

from lupin import validators as v
from lupin.errors import ValidationError

validators = v.Equal("Lupin") | v.Equal("Andrésy")
# validators passes only if value is "Lupin" or "Andrésy"

validators("Lupin", [])

try:
    validators("Holmes", [])
except ValidationError:
    print("Validation error")
Owner
Aurélien Amilin
Aurélien Amilin
Make posters from Markdown files.

MkPosters Create posters using Markdown. Supports icons, admonitions, and LaTeX mathematics. At the moment it is restricted to the specific layout of

Patrick Kidger 243 Dec 20, 2022
sphinx builder that outputs markdown files.

sphinx-markdown-builder sphinx builder that outputs markdown files Please ★ this repo if you found it useful ★ ★ ★ If you want frontmatter support ple

Clay Risser 144 Jan 06, 2023
Quick tutorial on orchest.io that shows how to build multiple deep learning models on your data with a single line of code using python

Deep AutoViML Pipeline for orchest.io Quickstart Build Deep Learning models with a single line of code: deep_autoviml Deep AutoViML helps you build te

Ram Seshadri 6 Oct 02, 2022
Deduplicating archiver with compression and authenticated encryption.

More screencasts: installation, advanced usage What is BorgBackup? BorgBackup (short: Borg) is a deduplicating backup program. Optionally, it supports

BorgBackup 9k Jan 09, 2023
Preview title and other information about links sent to chats.

Link Preview A small plugin for Nicotine+ to display preview information like title and description about links sent in chats. Plugin created with Nic

Nick 0 Sep 05, 2021
This repository outlines deploying a local Kubeflow v1.3 instance on microk8s and deploying a simple MNIST classifier using KFServing.

Zero to Inference with Kubeflow Getting Started This repository houses all of the tools, utilities, and example pipeline implementations for exploring

Ed Henry 3 May 18, 2022
Convert excel xlsx file's table to csv file, A GUI application on top of python/pyqt and other opensource softwares.

Convert excel xlsx file's table to csv file, A GUI application on top of python/pyqt and other opensource softwares.

David A 0 Jan 20, 2022
Markdown documentation generator from Google docstrings

mkgendocs A Python package for automatically generating documentation pages in markdown for Python source files by parsing Google style docstring. The

Davide Nunes 44 Dec 18, 2022
Practical Python Programming

Welcome! When I first learned Python nearly 25 years ago, I was immediately struck by how I could productively apply it to all sorts of messy work pro

Dabeaz LLC 8.3k Jan 08, 2023
[Unofficial] Python PEP in EPUB format

PEPs in EPUB format This is a unofficial repository where I stock all valid PEPs in the EPUB format. Repository Cloning git clone --recursive Mickaël Schoentgen 9 Oct 12, 2022

JMESPath is a query language for JSON.

JMESPath JMESPath (pronounced "james path") allows you to declaratively specify how to extract elements from a JSON document. For example, given this

1.7k Dec 31, 2022
Python Tool to Easily Generate Multiple Documents

Python Tool to Easily Generate Multiple Documents Running the script doesn't require internet Max Generation is set to 10k to avoid lagging/crashing R

2 Apr 27, 2022
Fast, efficient Blowfish cipher implementation in pure Python (3.4+).

blowfish This module implements the Blowfish cipher using only Python (3.4+). Blowfish is a block cipher that can be used for symmetric-key encryption

Jashandeep Sohi 41 Dec 31, 2022
A curated list of awesome mathematics resources

A curated list of awesome mathematics resources

Cyrille Rossant 6.7k Jan 05, 2023
Hjson for Python

hjson-py Hjson, a user interface for JSON Hjson works with Python 2.5+ and Python 3.3+ The Python implementation of Hjson is based on simplejson. For

Hjson 185 Dec 13, 2022
Fully reproducible, Dockerized, step-by-step, tutorial on how to mock a "real-time" Kafka data stream from a timestamped csv file. Detailed blog post published on Towards Data Science.

time-series-kafka-demo Mock stream producer for time series data using Kafka. I walk through this tutorial and others here on GitHub and on my Medium

Maria Patterson 26 Nov 15, 2022
Hasköy is an open-source variable sans-serif typeface family

Hasköy Hasköy is an open-source variable sans-serif typeface family. Designed with powerful opentype features and each weight includes latin-extended

67 Jan 04, 2023
Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents.

Iury de oliveira gomes figueiredo 60 Nov 16, 2022
Proyecto - Desgaste y rendimiento de empleados de IBM HR Analytics

Acceder al código desde Google Colab para poder ver de manera adecuada todas las visualizaciones y poder interactuar con ellas. Links de acceso: Noteb

1 Jan 31, 2022
A python package to import files from an adjacent folder

EasyImports About EasyImports is a python package that allows users to easily access and import files from sister folders: f.ex: - Project - Folde

1 Jun 22, 2022