easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Overview

easyopt

easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Features

  • YAML Configuration
  • Distributed Parallel Optimization
  • Experiments Monitoring and Crash Recovering
  • Experiments Replicas
  • Real Time Pruning
  • A wide variety of sampling strategies
    • Tree-structured Parzen Estimator
    • CMA-ES
    • Grid Search
    • Random Search
  • A wide variety of pruning strategies
    • Asynchronous Successive Halving Pruning
    • Hyperband Pruning
    • Median Pruning
    • Threshold Pruning
  • A wide variety of DBMSs
    • Redis
    • SQLite
    • PostgreSQL
    • MySQL
    • Oracle
    • And many more

Installation

To install easyopt just type:

pip install easyopt

Example

easyopt expects that hyperparameters are passed using the command line arguments.

For example this problem has two hyperparameters x and y

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)

To integrate easyopt you just have to

  • import easyopt
  • Add easyopt.objective(...) to report the experiment objective function value

The above code becomes:

import argparse
import easyopt

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)
easyopt.objective(F)

Next you have to create the easyopt.yml to define the problem search space, sampler, pruner, storage, etc.

command: python problem.py {args}
storage: sqlite:////tmp/easyopt-toy-problem.db
sampler: TPESampler
parameters:
  x:
    distribution: uniform
    low: -10
    high: 10
  y:
    distribution: uniform
    low: -10
    high: 10

You can find the compete list of distributions here (all the suggest_* functions)

Finally you have to create a study

easyopt create test-study

And run as many agents as you want

easyopt agent test-study

After a while the hyperparameter optimization will finish

Trial 0 finished with value: 90.0401543850028 and parameters: {'x': 5.552902529323713, 'y': 7.694506344453366}. Best is trial 0 with value: 90.0401543850028.
Trial 1 finished with value: 53.38635524683359 and parameters: {'x': 0.26609756303111, 'y': 7.301749607716118}. Best is trial 1 with value: 53.38635524683359.
Trial 2 finished with value: 64.41207387363161 and parameters: {'x': 7.706366704967074, 'y': 2.2414250115064167}. Best is trial 1 with value: 53.38635524683359.
...
...
Trial 53 finished with value: 0.5326245807950265 and parameters: {'x': -0.26584110075742917, 'y': 0.6796713102251005}. Best is trial 35 with value: 0.11134607529340049.
Trial 54 finished with value: 8.570230212116037 and parameters: {'x': 2.8425893061307295, 'y': 0.6999401751487438}. Best is trial 35 with value: 0.11134607529340049.
Trial 55 finished with value: 96.69479467451664 and parameters: {'x': -0.3606041968175481, 'y': -9.826736960342137}. Best is trial 35 with value: 0.11134607529340049.

YAML Structure

The YAML configuration file is structured as follows

command: 
storage: 
   
sampler: 
   
pruner: 
   
direction: 
   
replicas: 
   
parameters:
  parameter-1:
    distribution: 
   
    
   : 
   
    
   : 
   
    ...
  ...
  • command: the command to execute to run the experiment.
    • {args} will be expanded to --parameter-1=value-1 --parameter-2=value-2
    • {name} will be expanded to the study name
  • storage: the storage to use for the study. A full list of storages is available here
  • sampler: the sampler to use. The full list of samplers is available here
  • pruner: the pruner to use. The full list of pruners is available here
  • direction: can be minimize or maximize (default: minimize)
  • replicas: the number of replicas to run for the same experiment (the experiment result is the average). (default: 1)
  • parameters: the parameters to optimize
    • for each parameter have to specify
      • distribution the distribution to use. The full list of distributions is available here (all the suggest_* functions)
      • arg: value
        • Arguments of the distribution. The arguments documentation is available here

CLI Interface

easyopt offer two CLI commands:

  • create to create a study using the easyopt.yml file or the one specified with --config
  • agent to run the agent for

LIB Interface

When importing easyopt you can use three functions:

  • easyopt.objective(value) to report the final objective function value of the experiment
  • easyopt.report(value) to report the current objective function value of the experiment (used by the pruner)
  • easyopt.should_prune() it returns True if the pruner thinks that the run should be pruned

Examples

You can find some examples here

Contributions and license

The code is released as Free Software under the GNU/GPLv3 license. Copying, adapting and republishing it is not only allowed but also encouraged.

For any further question feel free to reach me at [email protected] or on Telegram @galatolo

Owner
Federico Galatolo
PhD Student @ University of Pisa
Federico Galatolo
cirrina is an opinionated asynchronous web framework based on aiohttp

cirrina cirrina is an opinionated asynchronous web framework based on aiohttp. Features: HTTP Server Websocket Server JSON RPC Server Shared sessions

André Roth 32 Mar 05, 2022
Python AsyncIO data API to manage billions of resources

Introduction Please read the detailed docs This is the working project of the next generation Guillotina server based on asyncio. Dependencies Python

Plone Foundation 183 Nov 15, 2022
Free and open source full-stack enterprise framework for agile development of secure database-driven web-based applications, written and programmable in Python.

Readme web2py is a free open source full-stack framework for rapid development of fast, scalable, secure and portable database-driven web-based applic

2k Dec 31, 2022
A PC remote controller for YouTube and Twitch

Lazynite Lazynite is a PC remote controller for YouTube and Twitch on Telegram. Features Volume control; Browser fullscreen / video fullscreen; PC shu

Alessio Celentano 46 Nov 12, 2022
A simple todo app using flask and sqlachemy

TODO app This is a simple TODO app made using Flask. Packages used: DoodleCSS Special thanks to Chris McCormick (@mccrmx) :) Flask Flask-SQLAlchemy Fl

Lenin 1 Dec 26, 2021
A public API written in Python using the Flask web framework to determine the direction of a road sign using AI

python-public-API This repository is a public API for solving the problem of the final of the AIIJC competition. The task is to create an AI for the c

Lev 1 Nov 08, 2021
Dockerized web application on Starlite, SQLAlchemy1.4, PostgreSQL

Production-ready dockerized async REST API on Starlite with SQLAlchemy and PostgreSQL

Artur Shiriev 10 Jan 03, 2023
The comprehensive WSGI web application library.

Werkzeug werkzeug German noun: "tool". Etymology: werk ("work"), zeug ("stuff") Werkzeug is a comprehensive WSGI web application library. It began as

The Pallets Projects 6.2k Jan 01, 2023
Free & open source Rest API for YTDislike

RestAPI Free & open source Rest API for YTDislike, read docs.ytdislike.com for implementing. Todo Add websockets Installation Git clone git clone http

1 Nov 25, 2021
Appier is an object-oriented Python web framework built for super fast app development.

Joyful Python Web App development Appier is an object-oriented Python web framework built for super fast app development. It's as lightweight as possi

Hive Solutions 122 Dec 22, 2022
Dazzler is a Python async UI/Web framework built with aiohttp and react.

Dazzler is a Python async UI/Web framework built with aiohttp and react. Create dazzling fast pages with a layout of Python components and bindings to update from the backend.

Philippe Duval 17 Oct 18, 2022
Pyrin is an application framework built on top of Flask micro-framework to make life easier for developers who want to develop an enterprise application using Flask

Pyrin A rich, fast, performant and easy to use application framework to build apps using Flask on top of it. Pyrin is an application framework built o

Mohamad Nobakht 10 Jan 25, 2022
Screaming-fast Python 3.5+ HTTP toolkit integrated with pipelining HTTP server based on uvloop and picohttpparser.

Japronto! There is no new project development happening at the moment, but it's not abandoned either. Pull requests and new maintainers are welcome. I

Paweł Piotr Przeradowski 8.6k Dec 29, 2022
Restful API framework wrapped around MongoEngine

Flask-MongoRest A Restful API framework wrapped around MongoEngine. Setup from flask import Flask from flask_mongoengine import MongoEngine from flask

Close 525 Jan 01, 2023
A simple Tornado based framework designed to accelerate web service development

Toto Toto is a small framework intended to accelerate web service development. It is built on top of Tornado and can currently use MySQL, MongoDB, Pos

Jeremy Olmsted-Thompson 61 Apr 06, 2022
Bromelia-hss implements an HSS by using the Python micro framework Bromélia.

Bromélia HSS bromelia-hss is the second official implementation of a Diameter-based protocol application by using the Python micro framework Bromélia.

henriquemr 7 Nov 02, 2022
A shopping list and kitchen inventory management app.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

11 Jun 03, 2022
Fast, asynchronous and elegant Python web framework.

Warning: This project is being completely re-written. If you're curious about the progress, reach me on Slack. Vibora is a fast, asynchronous and eleg

vibora.io 5.7k Jan 08, 2023
Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribution(s) to your data.

Distribution Analyser Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribu

Robert Dzudzar 46 Nov 08, 2022
The web framework for inventors

Emmett is a full-stack Python web framework designed with simplicity in mind. The aim of Emmett is to be clearly understandable, easy to be learned an

Emmett 796 Dec 26, 2022