easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Overview

easyopt

easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Features

  • YAML Configuration
  • Distributed Parallel Optimization
  • Experiments Monitoring and Crash Recovering
  • Experiments Replicas
  • Real Time Pruning
  • A wide variety of sampling strategies
    • Tree-structured Parzen Estimator
    • CMA-ES
    • Grid Search
    • Random Search
  • A wide variety of pruning strategies
    • Asynchronous Successive Halving Pruning
    • Hyperband Pruning
    • Median Pruning
    • Threshold Pruning
  • A wide variety of DBMSs
    • Redis
    • SQLite
    • PostgreSQL
    • MySQL
    • Oracle
    • And many more

Installation

To install easyopt just type:

pip install easyopt

Example

easyopt expects that hyperparameters are passed using the command line arguments.

For example this problem has two hyperparameters x and y

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)

To integrate easyopt you just have to

  • import easyopt
  • Add easyopt.objective(...) to report the experiment objective function value

The above code becomes:

import argparse
import easyopt

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)
easyopt.objective(F)

Next you have to create the easyopt.yml to define the problem search space, sampler, pruner, storage, etc.

command: python problem.py {args}
storage: sqlite:////tmp/easyopt-toy-problem.db
sampler: TPESampler
parameters:
  x:
    distribution: uniform
    low: -10
    high: 10
  y:
    distribution: uniform
    low: -10
    high: 10

You can find the compete list of distributions here (all the suggest_* functions)

Finally you have to create a study

easyopt create test-study

And run as many agents as you want

easyopt agent test-study

After a while the hyperparameter optimization will finish

Trial 0 finished with value: 90.0401543850028 and parameters: {'x': 5.552902529323713, 'y': 7.694506344453366}. Best is trial 0 with value: 90.0401543850028.
Trial 1 finished with value: 53.38635524683359 and parameters: {'x': 0.26609756303111, 'y': 7.301749607716118}. Best is trial 1 with value: 53.38635524683359.
Trial 2 finished with value: 64.41207387363161 and parameters: {'x': 7.706366704967074, 'y': 2.2414250115064167}. Best is trial 1 with value: 53.38635524683359.
...
...
Trial 53 finished with value: 0.5326245807950265 and parameters: {'x': -0.26584110075742917, 'y': 0.6796713102251005}. Best is trial 35 with value: 0.11134607529340049.
Trial 54 finished with value: 8.570230212116037 and parameters: {'x': 2.8425893061307295, 'y': 0.6999401751487438}. Best is trial 35 with value: 0.11134607529340049.
Trial 55 finished with value: 96.69479467451664 and parameters: {'x': -0.3606041968175481, 'y': -9.826736960342137}. Best is trial 35 with value: 0.11134607529340049.

YAML Structure

The YAML configuration file is structured as follows

command: 
storage: 
   
sampler: 
   
pruner: 
   
direction: 
   
replicas: 
   
parameters:
  parameter-1:
    distribution: 
   
    
   : 
   
    
   : 
   
    ...
  ...
  • command: the command to execute to run the experiment.
    • {args} will be expanded to --parameter-1=value-1 --parameter-2=value-2
    • {name} will be expanded to the study name
  • storage: the storage to use for the study. A full list of storages is available here
  • sampler: the sampler to use. The full list of samplers is available here
  • pruner: the pruner to use. The full list of pruners is available here
  • direction: can be minimize or maximize (default: minimize)
  • replicas: the number of replicas to run for the same experiment (the experiment result is the average). (default: 1)
  • parameters: the parameters to optimize
    • for each parameter have to specify
      • distribution the distribution to use. The full list of distributions is available here (all the suggest_* functions)
      • arg: value
        • Arguments of the distribution. The arguments documentation is available here

CLI Interface

easyopt offer two CLI commands:

  • create to create a study using the easyopt.yml file or the one specified with --config
  • agent to run the agent for

LIB Interface

When importing easyopt you can use three functions:

  • easyopt.objective(value) to report the final objective function value of the experiment
  • easyopt.report(value) to report the current objective function value of the experiment (used by the pruner)
  • easyopt.should_prune() it returns True if the pruner thinks that the run should be pruned

Examples

You can find some examples here

Contributions and license

The code is released as Free Software under the GNU/GPLv3 license. Copying, adapting and republishing it is not only allowed but also encouraged.

For any further question feel free to reach me at [email protected] or on Telegram @galatolo

Owner
Federico Galatolo
PhD Student @ University of Pisa
Federico Galatolo
You can use the mvc pattern in your flask application using this extension.

You can use the mvc pattern in your flask application using this extension. Installation Run the follow command to install mvc_flask: $ pip install mv

Marcus Pereira 37 Dec 17, 2022
Dockerized web application on Starlite, SQLAlchemy1.4, PostgreSQL

Production-ready dockerized async REST API on Starlite with SQLAlchemy and PostgreSQL

Artur Shiriev 10 Jan 03, 2023
Django Ninja - Fast Django REST Framework

Django Ninja is a web framework for building APIs with Django and Python 3.6+ type hints.

Vitaliy Kucheryaviy 3.8k Jan 02, 2023
Trame let you weave various components and technologies into a Web Application solely written in Python.

Trame Trame aims to be a framework for building interactive applications using a web front-end in plain Python. Such applications can be used locally

Kitware, Inc. 85 Dec 29, 2022
Asynchronous HTTP client/server framework for asyncio and Python

Async http client/server framework Key Features Supports both client and server side of HTTP protocol. Supports both client and server Web-Sockets out

aio-libs 13.2k Jan 05, 2023
News search API developed for the purposes of the ColdCase Project.

Saxion - Cold Case - News Search API Setup Local – Linux/MacOS Make sure you have python 3.9 and pip 21 installed. This project uses a MySQL database,

Dimitar Rangelov 3 Jul 01, 2021
Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed.

Tornado Web Server Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed. By using non-blocking ne

20.9k Jan 01, 2023
🦍 The Cloud-Native API Gateway

Kong or Kong API Gateway is a cloud-native, platform-agnostic, scalable API Gateway distinguished for its high performance and extensibility via plugi

Kong 33.8k Jan 09, 2023
Chisel is a light-weight Python WSGI application framework built for creating well-documented, schema-validated JSON web APIs

chisel Chisel is a light-weight Python WSGI application framework built for creating well-documented, schema-validated JSON web APIs. Here are its fea

Craig Hobbs 2 Dec 02, 2021
A proof-of-concept CherryPy inspired Python micro framework

Varmkorv Varmkorv is a CherryPy inspired micro framework using Werkzeug. This is just a proof of concept. You are free to use it if you like, or find

Magnus Karlsson 1 Nov 22, 2021
REST API framework designed for human beings

Eve Eve is an open source Python REST API framework designed for human beings. It allows to effortlessly build and deploy highly customizable, fully f

eve 6.6k Jan 07, 2023
FastAPI framework, high performance, easy to learn, fast to code, ready for production

FastAPI framework, high performance, easy to learn, fast to code, ready for production Documentation: https://fastapi.tiangolo.com Source Code: https:

Sebastián Ramírez 53k Jan 02, 2023
Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribution(s) to your data.

Distribution Analyser Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribu

Robert Dzudzar 46 Nov 08, 2022
The core of a service layer that integrates with the Pyramid Web Framework.

pyramid_services The core of a service layer that integrates with the Pyramid Web Framework. pyramid_services defines a pattern and helper methods for

Michael Merickel 78 Apr 15, 2022
FPS, fast pluggable server, is a framework designed to compose and run a web-server based on plugins.

FPS, fast pluggable server, is a framework designed to compose and run a web-server based on plugins. It is based on top of fastAPI, uvicorn, typer, and pluggy.

Adrien Delsalle 1 Nov 16, 2021
A public API written in Python using the Flask web framework to determine the direction of a road sign using AI

python-public-API This repository is a public API for solving the problem of the final of the AIIJC competition. The task is to create an AI for the c

Lev 1 Nov 08, 2021
WebSocket and WAMP in Python for Twisted and asyncio

Autobahn|Python WebSocket & WAMP for Python on Twisted and asyncio. Quick Links: Source Code - Documentation - WebSocket Examples - WAMP Examples Comm

Crossbar.io 2.4k Jan 06, 2023
A shopping list and kitchen inventory management app.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

11 Jun 03, 2022
A comprehensive reference for all topics related to building and maintaining microservices

This pandect (πανδέκτης is Ancient Greek for encyclopedia) was created to help you find and understand almost anything related to Microservices that i

Ivan Bilan 64 Dec 09, 2022
Screaming-fast Python 3.5+ HTTP toolkit integrated with pipelining HTTP server based on uvloop and picohttpparser.

Japronto! There is no new project development happening at the moment, but it's not abandoned either. Pull requests and new maintainers are welcome. I

Paweł Piotr Przeradowski 8.6k Dec 29, 2022