easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Overview

easyopt

easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Features

  • YAML Configuration
  • Distributed Parallel Optimization
  • Experiments Monitoring and Crash Recovering
  • Experiments Replicas
  • Real Time Pruning
  • A wide variety of sampling strategies
    • Tree-structured Parzen Estimator
    • CMA-ES
    • Grid Search
    • Random Search
  • A wide variety of pruning strategies
    • Asynchronous Successive Halving Pruning
    • Hyperband Pruning
    • Median Pruning
    • Threshold Pruning
  • A wide variety of DBMSs
    • Redis
    • SQLite
    • PostgreSQL
    • MySQL
    • Oracle
    • And many more

Installation

To install easyopt just type:

pip install easyopt

Example

easyopt expects that hyperparameters are passed using the command line arguments.

For example this problem has two hyperparameters x and y

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)

To integrate easyopt you just have to

  • import easyopt
  • Add easyopt.objective(...) to report the experiment objective function value

The above code becomes:

import argparse
import easyopt

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)
easyopt.objective(F)

Next you have to create the easyopt.yml to define the problem search space, sampler, pruner, storage, etc.

command: python problem.py {args}
storage: sqlite:////tmp/easyopt-toy-problem.db
sampler: TPESampler
parameters:
  x:
    distribution: uniform
    low: -10
    high: 10
  y:
    distribution: uniform
    low: -10
    high: 10

You can find the compete list of distributions here (all the suggest_* functions)

Finally you have to create a study

easyopt create test-study

And run as many agents as you want

easyopt agent test-study

After a while the hyperparameter optimization will finish

Trial 0 finished with value: 90.0401543850028 and parameters: {'x': 5.552902529323713, 'y': 7.694506344453366}. Best is trial 0 with value: 90.0401543850028.
Trial 1 finished with value: 53.38635524683359 and parameters: {'x': 0.26609756303111, 'y': 7.301749607716118}. Best is trial 1 with value: 53.38635524683359.
Trial 2 finished with value: 64.41207387363161 and parameters: {'x': 7.706366704967074, 'y': 2.2414250115064167}. Best is trial 1 with value: 53.38635524683359.
...
...
Trial 53 finished with value: 0.5326245807950265 and parameters: {'x': -0.26584110075742917, 'y': 0.6796713102251005}. Best is trial 35 with value: 0.11134607529340049.
Trial 54 finished with value: 8.570230212116037 and parameters: {'x': 2.8425893061307295, 'y': 0.6999401751487438}. Best is trial 35 with value: 0.11134607529340049.
Trial 55 finished with value: 96.69479467451664 and parameters: {'x': -0.3606041968175481, 'y': -9.826736960342137}. Best is trial 35 with value: 0.11134607529340049.

YAML Structure

The YAML configuration file is structured as follows

command: 
storage: 
   
sampler: 
   
pruner: 
   
direction: 
   
replicas: 
   
parameters:
  parameter-1:
    distribution: 
   
    
   : 
   
    
   : 
   
    ...
  ...
  • command: the command to execute to run the experiment.
    • {args} will be expanded to --parameter-1=value-1 --parameter-2=value-2
    • {name} will be expanded to the study name
  • storage: the storage to use for the study. A full list of storages is available here
  • sampler: the sampler to use. The full list of samplers is available here
  • pruner: the pruner to use. The full list of pruners is available here
  • direction: can be minimize or maximize (default: minimize)
  • replicas: the number of replicas to run for the same experiment (the experiment result is the average). (default: 1)
  • parameters: the parameters to optimize
    • for each parameter have to specify
      • distribution the distribution to use. The full list of distributions is available here (all the suggest_* functions)
      • arg: value
        • Arguments of the distribution. The arguments documentation is available here

CLI Interface

easyopt offer two CLI commands:

  • create to create a study using the easyopt.yml file or the one specified with --config
  • agent to run the agent for

LIB Interface

When importing easyopt you can use three functions:

  • easyopt.objective(value) to report the final objective function value of the experiment
  • easyopt.report(value) to report the current objective function value of the experiment (used by the pruner)
  • easyopt.should_prune() it returns True if the pruner thinks that the run should be pruned

Examples

You can find some examples here

Contributions and license

The code is released as Free Software under the GNU/GPLv3 license. Copying, adapting and republishing it is not only allowed but also encouraged.

For any further question feel free to reach me at [email protected] or on Telegram @galatolo

Owner
Federico Galatolo
PhD Student @ University of Pisa
Federico Galatolo
The Web framework for perfectionists with deadlines.

Django Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design. Thanks for checking it out. All docu

Django 67.9k Dec 29, 2022
The comprehensive WSGI web application library.

Werkzeug werkzeug German noun: "tool". Etymology: werk ("work"), zeug ("stuff") Werkzeug is a comprehensive WSGI web application library. It began as

The Pallets Projects 6.2k Jan 01, 2023
Web APIs for Django. 🎸

Django REST framework Awesome web-browsable Web APIs. Full documentation for the project is available at https://www.django-rest-framework.org/. Fundi

Encode 24.7k Jan 03, 2023
An easy-to-use high-performance asynchronous web framework.

中文 | English 一个易用的高性能异步 web 框架。 Index.py 文档 Index.py 实现了 ASGI3 接口,并使用 Radix Tree 进行路由查找。是最快的 Python web 框架之一。一切特性都服务于快速开发高性能的 Web 服务。 大量正确的类型注释 灵活且高效的

Index.py 264 Dec 31, 2022
aiohttp-ratelimiter is a rate limiter for the aiohttp.web framework.

aiohttp-ratelimiter aiohttp-ratelimiter is a rate limiter for the aiohttp.web fr

JGL Technologies 4 Dec 11, 2022
Asynchronous HTTP client/server framework for asyncio and Python

Async http client/server framework Key Features Supports both client and server side of HTTP protocol. Supports both client and server Web-Sockets out

aio-libs 13.2k Jan 05, 2023
A high-level framework for building GitHub applications in Python.

A high-level framework for building GitHub applications in Python. Core Features Async Proper ratelimit handling Handles interactions for you (

Vish M 3 Apr 12, 2022
Low code web framework for real world applications, in Python and Javascript

Full-stack web application framework that uses Python and MariaDB on the server side and a tightly integrated client side library.

Frappe 4.3k Dec 30, 2022
The core of a service layer that integrates with the Pyramid Web Framework.

pyramid_services The core of a service layer that integrates with the Pyramid Web Framework. pyramid_services defines a pattern and helper methods for

Michael Merickel 78 Apr 15, 2022
A public API written in Python using the Flask web framework to determine the direction of a road sign using AI

python-public-API This repository is a public API for solving the problem of the final of the AIIJC competition. The task is to create an AI for the c

Lev 1 Nov 08, 2021
Python implementation of the Javascript Object Signing and Encryption (JOSE) framework

Python implementation of the Javascript Object Signing and Encryption (JOSE) framework

Demonware 94 Nov 20, 2022
Cses2humio - CrowdStrike Falcon Event Stream to Humio

CrowdStrike Falcon Event Stream to Humio This project intend to provide a simple

Trifork.Security 6 Aug 02, 2022
A proof-of-concept CherryPy inspired Python micro framework

Varmkorv Varmkorv is a CherryPy inspired micro framework using Werkzeug. This is just a proof of concept. You are free to use it if you like, or find

Magnus Karlsson 1 Nov 22, 2021
Containers And REST APIs Workshop

Containers & REST APIs Workshop Containers vs Virtual Machines Ferramentas Podman: https://podman.io/ Docker: https://www.docker.com/ IBM CLI: https:/

Vanderlei Munhoz 8 Dec 16, 2021
A Flask API REST to access words' definition

A Flask API to access words' definitions

Pablo Emídio S.S 9 Jul 22, 2022
Free & open source Rest API for YTDislike

RestAPI Free & open source Rest API for YTDislike, read docs.ytdislike.com for implementing. Todo Add websockets Installation Git clone git clone http

1 Nov 25, 2021
A comprehensive reference for all topics related to building and maintaining microservices

This pandect (πανδέκτης is Ancient Greek for encyclopedia) was created to help you find and understand almost anything related to Microservices that i

Ivan Bilan 64 Dec 09, 2022
WebSocket and WAMP in Python for Twisted and asyncio

Autobahn|Python WebSocket & WAMP for Python on Twisted and asyncio. Quick Links: Source Code - Documentation - WebSocket Examples - WAMP Examples Comm

Crossbar.io 2.4k Jan 06, 2023
The Python micro framework for building web applications.

Flask Flask is a lightweight WSGI web application framework. It is designed to make getting started quick and easy, with the ability to scale up to co

The Pallets Projects 61.5k Jan 06, 2023
cirrina is an opinionated asynchronous web framework based on aiohttp

cirrina cirrina is an opinionated asynchronous web framework based on aiohttp. Features: HTTP Server Websocket Server JSON RPC Server Shared sessions

André Roth 32 Mar 05, 2022