AERO 421: Spacecraft Attitude, Dynamics, and Control Final Project.

Overview

AERO - 421 Final Project Redevelopment

Spacecraft Attitude, Dynamics, and Control: Simulation to determine and control a satellite's attitude in LEO.

Background

AERO-421, or Spacecraft Attitude, Dynamics, and Controls, is a class taught at the California Polytechnic State University at San Luis Obispo (Cal Poly SLO) which serves as an...

"Introduction to spacecraft attitude dynamics and control... [and] fundamentals of guidance and navigation systems... [with emphasis in] analysis and design of control systems for aerospace vehicles." - Cal Poly Aerospace Engineering Course Catalog

The final project in the course was to develop a simulation to determine a satellite's attitude in Low Earth Orbit (LEO), consider and model detumbling from a launch vehicle, consider and model disturbances due to external forces i.e., Solar Radiation Pressure (SRP), and to consider and model control via onboard reaction wheels.

More information regarding the 6 different parts can be found below.

The initial project was developed in MATLAB, however, the project will be completely redeveloped in Python to showcase controls and software development skillsets.

Part 0: Context and Given Data

The project will explore modeling and simulation of the various stages of a spacecraft mission, specifically simulating the attitude dynamics from initial spacecraft deployment to operation. In this simulation, the spacecraft is an Earth observing satellite and an attitude determination and control system must be designed using reaction wheels to ensure the spacecraft maintains pointing nadir.

Orbital Data:

  • h (angular momentum) = 53335.2 km^2/s
  • e (eccentricity) = 0
  • Ω (Right Ascension of Ascending Node) = 0 deg
  • i (inclination) = 98.43 deg
  • ω (Argument of Perigee) = 0 deg
  • θ (True Anomaly) = 0 deg
  • ϵ-LVLH (Initial Quaternion relating the body to the LVLH frame) = [0, 0, 0]; η = 1

Detumble Phase:

  • Spacecraft is a square box with 2 meters on each edge with total mass of 640 kg
  • Initial Angular Velocity of [-0.05, 0.03, 0.2] rad/s relating the body to the ECI frame

Normal Operations:

  • Spacecraft bus is a 2 meter cube with mass of 500 kg. The center of mass of the spacecraft is located at the geometric center of the bus.
  • A rectangular sensor is attached to the face pointing towards the Earth (+Z-axis) and is 1 meter long and 0.25 meters square. The sensor has a mass of 100 kg.
  • Two solar panels are deployed along the +/- Y-axis and are constrained to rotate about the +/- Y-axis. The solar panels are 3 meters long (in the Y-axis), 2 meters wide, and 0.05 meters thick. Each panel has a mass of 20 kg and the center of mass is located at the geometric center of the panel. The solar panels do not rotate relative to the spacecraft bus.
  • Assume all spacecraft components have uniform density with centers of mass located at the geometric centers of each component
  • Magnetically, the spacecraft residual magnetic dipole moment can be modeled as pointing in the -Z direction with magnitude 0.5 A-m^2
  • See the figure below for the spacecraft schematic
  • Because the thrusters are not actually fully-modulated thrusters, the spacecraft will have a residual angular velocity of [0.001, -0.001, 0.002] rad/s relating the body to the ECI frame after the detumble phase.
  • During operation the spacecraft is required to point at the target on the ground to within 0.001 degrees 3-sigma using the reaction wheels used in the reaction wheels part.

Spacecraft Schematic

Part 1: Mass Properties

Determine the mass and inertial properties of the spacecraft for both the detumble and the normal operations phases.

Outputs:

  • Total mass of the spacecraft
  • Center of mass relative to the spacecraft bus center of mass. The body frame will be located at the center of mass of the whole spacecraft
  • Intertia matrix of the whole spacecraft about the center of mass of the spacecraft

Part 2: Torque Free Motion

Model the torque free orbital and attitude motion of the spacecraft

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for one orbit of the normal operations phase

Part 3: Detumble

Simulate the motion of the satellite during the detumble phase. Assume fully modulated thrusters and use direct velocity feedback

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for the detumble phase
  • Torque components in the body frame

Part 4: Disturbance Simulation

Add the four disturbance models to the simulation:

  • Atmospheric Drag
  • Solar Pressure
  • Gravity Gradient
  • Earth Magnetic Field

Use the following model for the atmospheric density. Notice that h is the height above the Earth's surface in kilometers where R_Earth equals 6378km

Disturbance Model

Consider the simulation epoch to be March 20, 2021. Disregard any variations of the ECI representation of the sunlight direction during the simulation.

Outputs: Plots for...

  • Euler angles and quaternions relating the body to the ECI reference frame
  • Euler angles and quaternions relating the body to the LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI frame expressed in body components
  • Angular velocity of the spacecraft relative to the LVLH frame expressed in body components
  • Torque components for atmospheric drag, solar radiation pressure, gravity gradient, and earth magnetic field

Part 5: Reaction Wheel Control

Determine the control gains for a full state feedback 3-axis reaction wheel control system. Use the requirements of ζ = 0.65 and t_s = 30 sec

The positions of the 3 reaction wheels are [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Each reaction wheel can be modeled as a simple cylinder with radius of 0.3 m and a height of 0.02 m

Outputs: Plots for...

  • Euler angles and quaternions relating the body to ECI reference frame
  • Euler angles and quaternions relating the body to LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI reference frame expressed in body components
  • Angular velocity of the spacecraft relative to LVLH frame expressed in body components
  • Commanded moment from the determined control law
  • Wheel speed of each reaction wheel

Part 6: Visualization

Determine and animate the quanterions of the spacecraft, from ECI to body frame, for the duration of 1-5 revolutions.

Output:

  • Table of quaternion and time data
  • Video or other animation file to show the revolution of the spacecraft
Owner
Gagandeep Thapar
- (he/they) - 4th year Aerospace Engineering (w/ CS Minor) at Cal Poly SLO - Interested in Launch Vehicle and Spacecraft Controls and Avionics
Gagandeep Thapar
DIY split-flap display

The goal is to make a low-cost display that's easy to fabricate at home in small/single quantities (e.g. custom materials can be ordered from Ponoko or similar, and other hardware is generally availa

Scott Bezek 2.5k Jan 05, 2023
An IoT Trivia app that shows you how to take a JSON web API such as the opentdb.com API and stream and display it on a FeatherS2 in an OLED display.

CircuitPython IoT Trivia ESP32-S2 OLED Version An IoT Trivia app that shows you how to take a JSON web API such as the opentdb.com API and stream and

Kevin Thomas 1 Nov 27, 2021
♟️ QR Code display for P4wnP1 (SSH, VNC, any text / URL)

♟️ Display QR Codes on P4wnP1 (p4wnsolo-qr) 🟢 QR Code display for P4wnP1 w/OLED (SSH, VNC, P4wnP1 WebGUI, any text / URL / exfiltrated data) Note: Th

PawnSolo 4 Dec 19, 2022
Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Hotplugger: Real USB Port Passthrough for VFIO/QEMU! Welcome to Hotplugger! This app, as the name might tell you, is a combination of some scripts (py

DARKGuy (Alemar) 66 Nov 24, 2022
Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z

nissan_ecu_hacking Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z My goal

Liam Goss 11 Sep 24, 2022
A 3rd party Moonraker component to create timelapse of 3D prints.

A 3rd party Moonraker component to create timelapse of 3D prints.

Mainsail-Crew 166 Dec 26, 2022
rPico KMK powered macropad with IPS screen

MacroPact rPico KMK powered macropad with IPS screen Idea/Desing: Sean Yin Build/Coding: kbjunky ( In case of any problems hit me up on Discord kbjunk

81 Dec 21, 2022
Cow Feeder is a bot automatically execute trade on cowswap

Cow Feeder is a bot automatically execute trade on cowswap, includes functions: Monitoring Ethereum network gas price and execute trade whe

6 Apr 20, 2022
FHEM Connector for FHT Heating devices

home-assistant-fht from: https://github.com/Rsclub22 FHEM Connector for FHT Heating devices (connected via FHEM) Requires FHEM to work You can find FH

5 Dec 01, 2022
Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API.

Hildebrand Glow (DCC) Integration Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API. T

Aniket 153 Dec 30, 2022
A simple non-official manager interface I'm using for my Raspberry Pis.

My Raspberry Pi Manager Overview I have two Raspberry Pi 4 Model B devices that I hooked up to my two TVs (one in my bedroom and the other in my new g

Christian Deacon 21 Jan 04, 2023
Provide Unifi device info via api to Home Assistant that will give ap sensors

Unifi AP Device info Provide Unifi device info via api to Home Assistant that will give ap sensors

12 Jan 07, 2023
Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;)

TMorse Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;) Compatible with python3.9+. No third-party library is required

Mahyar 2 Jul 11, 2022
Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi

Clean Dashboard for Pi-Hole Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi.

Alessio Santoru 104 Dec 14, 2022
Setup DevTerm to be a cool non-GUI device

DevTerm hobby project I bought this amazing device: DevTerm A-0604. It has a beefy ARM processor, runs a custom version of Armbian, embraces Open Sour

Alex Shteinikov 9 Nov 17, 2022
Home Assistant custom components MPK-Lodz

MPK Łódź sensor This sensor uses unofficial API provided by MPK Łódź. Configuration options Key Type Required Default Description name string False MP

Piotr Machowski 3 Nov 01, 2022
Hardware-accelerated ROS2 packages for camera image processing.

Isaac ROS Image Pipeline Overview This metapackage offers similar functionality as the standard, CPU-based image_pipeline metapackage, but does so by

NVIDIA Isaac ROS 52 Dec 15, 2022
HomeAssistant - Polyaire AirTouch 4 Integration

HomeAssistant - Polyaire AirTouch 4 Integration Custom integration to add an AirTouch 4 AC Controller Installation: Copy contents of custom_components

7 Aug 05, 2022
Automatically draw a KiCad schematic for a circuit prototyped on a breadboard.

Schematic-o-matic Schematic-o-matic automatically draws a KiCad schematic for a circuit prototyped on a breadboard. How It Works The first step in the

Nick Bild 22 Oct 11, 2022
Python apps to assist with Gas Blending

Welcome to DiveTools Gas Blending This tool is for testing and educational use. It is not intended to confirm the mix of breathing gases. If this tool

Tucker 7 Sep 18, 2022