Inferoxy is a service for quick deploying and using dockerized Computer Vision models.

Overview

Inferoxy

codecov

What is it?

Inferoxy is a service for quick deploying and using dockerized Computer Vision models. It's a core of EORA's Computer Vision platform Vision Hub that runs on top of AWS EKS.

Why use it?

You should use it if:

  • You want to simplify deploying Computer Vision models with an appropriate Data Science stack to production: all you need to do is to build a Docker image with your model including any pre- and post-processing steps and push it into an accessible registry
  • You have only one machine or cluster for inference (CPU/GPU)
  • You want automatic batching for multi-GPU/multi-node setup
  • Model versioning

Architecture

Overall architecture

Inferoxy is built using message broker pattern.

  • Roughly speaking, it accepts user requests through different interfaces which we call "bridges". Multiple bridges can run simultaneously. Current supported bridges are REST API, gRPC and ZeroMQ
  • The requests are carefully split into batches and processed on a single multi-GPU machine or a multi-node cluster
  • The models to be deployed are managed through Model Manager that communicates with Redis to store/retrieve models information such as Docker image URL, maximum batch size value, etc.

Batching

Batching

One of the core Inferoxy's features is the batching mechanism.

  • For batch processing it's taken into consideration that different models can utilize different batch sizes and that some models can process a series of batches from a specific user, e.g. for video processing tasks. The latter models are called "stateful" models while models which don't depend on user state are called "stateless"
  • Multiple copies of the same model can run on different machines while only one copy can run on the same GPU device. So, to increase models efficiency it's recommended to set batch size for models to be as high as possible
  • A user of the stateful model reserves the whole copy of the model and releases it when his task is finished.
  • Users of the stateless models can use the same copy of the model simultaneously
  • Numpy tensors of RGB images with metadata are all going through ZeroMQ to the models and the results are also read from ZeroMQ socket

Cluster management

Cluster

The cluster management consists of keeping track of the running copies of the models, load analysis, health checking and alerting.

Requirements

You can run Inferoxy locally on a single machine or k8s cluster. To run Inferoxy, you should have a minimum of 4GB RAM and CPU or GPU device depending on your speed/cost trade-off.

Basic commands

Local run

To run locally you should use Inferoxy Docker image. The last version you can find here.

docker pull public.registry.visionhub.ru/inferoxy:v1.0.4

After image is pulled we need to make basic configuration using .env file

# .env
CLOUD_CLIENT=docker
TASK_MANAGER_DOCKER_CONFIG_NETWORK=inferoxy
TASK_MANAGER_DOCKER_CONFIG_REGISTRY=
TASK_MANAGER_DOCKER_CONFIG_LOGIN=
TASK_MANAGER_DOCKER_CONFIG_PASSWORD=
MODEL_STORAGE_DATABASE_HOST=redis
MODEL_STORAGE_DATABASE_PORT=6379
MODEL_STORAGE_DATABASE_NUMBER=0
LOGGING_LEVEL=INFO

The next step is to create inferoxy Docker network.

docker network create inferoxy

Now we should run Redis in this network. Redis is needed to store information about your models.

docker run --network inferoxy --name redis redis:latest 

Create models.yaml file with simple set of models. You can read about models.yaml in documentation

stub:
  address: public.registry.visionhub.ru/models/stub:v5
  batch_size: 256
  run_on_gpu: False
  stateless: True

Now we can start Inferoxy:

docker run --env-file .env 
	-v /var/run/docker.sock:/var/run/docker.sock \
	-p 7787:7787 -p 7788:7788 -p 8000:8000 -p 8698:8698\
	--name inferoxy --rm \
	--network inferoxy \
	-v $(pwd)/models.yaml:/etc/inferoxy/models.yaml \
	public.registry.visionhub.ru/inferoxy:${INFEROXY_VERSION}

Documentation

You can find the full documentation here

Discord

Join our community in Discord server to discuss stuff related to Inferoxy usage and development

A Python Implementation for Git for learning

A pure Python implementation for Git based on Buliding Git

shidenggui 42 Jul 13, 2022
Get Response Of Container Deployment Kube with python

get-response-of-container-deployment-kube 概要 get-response-of-container-deployment-kube は、例えばエッジコンピューティング環境のコンテナデプロイメントシステムにおいて、デプロイ元の端末がデプロイ先のコンテナデプロイ

Latona, Inc. 3 Nov 05, 2021
MicroK8s is a small, fast, single-package Kubernetes for developers, IoT and edge.

MicroK8s The smallest, fastest Kubernetes Single-package fully conformant lightweight Kubernetes that works on 42 flavours of Linux. Perfect for: Deve

Ubuntu 7.1k Jan 08, 2023
Self-hosted, easily-deployable monitoring and alerts service - like a lightweight PagerDuty

Cabot Maintainers wanted Cabot is stable and used by hundreds of companies and individuals in production, but it is not actively maintained. We would

Arachnys 5.4k Dec 23, 2022
Ingress patch example by Kustomize

Ingress patch example by Kustomize

Jinu 10 Nov 14, 2022
Tiny Git is a simplified version of Git with only the basic functionalities to gain better understanding of git internals.

Tiny Git is a simplified version of Git with only the basic functionalities to gain better understanding of git internals. Implemented Functi

Ahmed Ayman 2 Oct 15, 2021
This is a tool to develop, build and test PHP extensions in Docker containers.

Develop, Build and Test PHP Extensions This is a tool to develop, build and test PHP extensions in Docker containers. Installation Clone this reposito

Suora GmbH 10 Oct 22, 2022
A Habitica Integration with Github Workflows.

Habitica-Workflow A Habitica Integration with Github Workflows. How To Use? Fork (and Star) this repository. Set environment variable in Settings - S

Priate 2 Dec 20, 2021
Simple ssh overlay for easy, remote server management written in Python GTK with paramiko

Simple "ssh" overlay for easy, remote server management written in Python GTK with paramiko

kłapouch 3 May 01, 2022
Ralph is the CMDB / Asset Management system for data center and back office hardware.

Ralph Ralph is full-featured Asset Management, DCIM and CMDB system for data centers and back offices. Features: keep track of assets purchases and th

Allegro Tech 1.9k Jan 01, 2023
DC/OS - The Datacenter Operating System

DC/OS - The Datacenter Operating System The easiest way to run microservices, big data, and containers in production. What is DC/OS? Like traditional

DC/OS 2.3k Jan 06, 2023
CTF infrastructure deployment automation tool.

CTF infrastructure deployment automation tool. Focus on the challenges. Mirrored from

Fake News 1 Apr 12, 2022
Visual disk-usage analyser for docker images

whaler What? A command-line tool for visually investigating the disk usage of docker images Why? Large images are slow to move and expensive to store.

Treebeard Technologies 194 Sep 01, 2022
Cross-platform lib for process and system monitoring in Python

Home Install Documentation Download Forum Blog Funding What's new Summary psutil (process and system utilities) is a cross-platform library for retrie

Giampaolo Rodola 9k Jan 02, 2023
Deploy a simple Multi-Node Clickhouse Cluster with docker-compose in minutes.

Simple Multi Node Clickhouse Cluster I hate those single-node clickhouse clusters and manually installation, I mean, why should we: Running multiple c

Nova Kwok 11 Nov 18, 2022
Dockerized iCloud drive

iCloud-drive-docker is a simple iCloud drive client in Docker environment. It uses pyiCloud python library to interact with iCloud

Mandar Patil 376 Jan 01, 2023
Build and Push docker image in Python (luigi + docker-py)

Docker build images workflow in Python Since docker hub stopped building images for free accounts, I've been looking for another way to do it. I could

Fabien D. 2 Dec 15, 2022
Rancher Kubernetes API compatible with RKE, RKE2 and maybe others?

kctl Rancher Kubernetes API compatible with RKE, RKE2 and maybe others? Documentation is WIP. Quickstart pip install --upgrade kctl Usage from lazycls

1 Dec 02, 2021
🐳 Docker templates for various languages.

Docker Deployment Templates One Stop repository for Docker Compose and Docker Templates for Deployment. Features Python (FastAPI, Flask) Screenshots D

CodeChef-VIT 6 Aug 28, 2022