Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch

Overview

Auditory Slow-Fast

This repository implements the model proposed in the paper:

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021

Project's webpage

arXiv paper

Citing

When using this code, kindly reference:

@ARTICLE{Kazakos2021SlowFastAuditory,
   title={Slow-Fast Auditory Streams For Audio Recognition},
   author={Kazakos, Evangelos and Nagrani, Arsha and Zisserman, Andrew and Damen, Dima},
           journal   = {CoRR},
           volume    = {abs/2103.03516},
           year      = {2021},
           ee        = {https://arxiv.org/abs/2103.03516},
}

Pretrained models

You can download our pretrained models on VGG-Sound and EPIC-KITCHENS-100:

  • Slow-Fast (EPIC-KITCHENS-100) link
  • Slow (EPIC-KITCHENS-100) link
  • Fast (EPIC-KITCHENS-100) link
  • Slow-Fast (VGG-Sound) link
  • Slow (VGG-Sound) link
  • Fast (VGG-Sound) link

Preparation

  • Requirements:
    • PyTorch 1.7.1
    • librosa: conda install -c conda-forge librosa
    • h5py: conda install h5py
    • wandb: pip install wandb
    • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
    • simplejson: pip install simplejson
    • psutil: pip install psutil
    • tensorboard: pip install tensorboard
  • Add this repository to $PYTHONPATH.
export PYTHONPATH=/path/to/auditory-slow-fast/slowfast:$PYTHONPATH
  • VGG-Sound:
    1. Download the audio. For instructions see here
    2. Download train.pkl (link) and test.pkl (link). I converted the original train.csv and test.csv (found here) to pickle files with column names for easier use
  • EPIC-KITCHENS:
    1. From the annotation repository of EPIC-KITCHENS-100 (link), download: EPIC_100_train.pkl, EPIC_100_validation.pkl, and EPIC_100_test_timestamps.pkl. EPIC_100_train.pkl and EPIC_100_validation.pkl will be used for training/validation, while EPIC_100_test_timestamps.pkl can be used to obtain the scores to submit in the AR challenge.
    2. Download all the videos of EPIC-KITCHENS-100 using the download scripts found here, where you can also find detailed instructions on using the scripts.
    3. Extract audio from the videos by running:
    python audio_extraction/extract_audio.py /path/to/videos /output/path 
    
    1. Save audio in HDF5 format by running:
    python audio_extraction/wav_to_hdf5.py /path/to/audio /output/hdf5/EPIC-KITCHENS-100_audio.hdf5
    

Training/validation on EPIC-KITCHENS-100

To train the model run (fine-tuning from VGG-Sound pretrained model):

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To train from scratch remove TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model.

You can also train the individual streams. For example, for training Slow run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOW_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To validate the model run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

To obtain scores on the test set run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth 
EPICKITCHENS.TEST_LIST EPIC_100_test_timestamps.pkl EPICKITCHENS.TEST_SPLIT test

Training/validation on VGG-Sound

To train the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations 

To validate the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

License

The code is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, found here.

Owner
Evangelos Kazakos
Evangelos Kazakos
GiantMIDI-Piano is a classical piano MIDI dataset contains 10,854 MIDI files of 2,786 composers

GiantMIDI-Piano is a classical piano MIDI dataset contains 10,854 MIDI files of 2,786 composers

Bytedance Inc. 1.3k Jan 04, 2023
Graphical interface to control granular sound synthesis.

Granular sound synthesis interface SoundGrain is a graphical interface where users can draw and edit trajectories to control granular sound synthesis

Olivier Bélanger 122 Dec 10, 2022
A voice assistant which can be used to interact with your computer and controls your pc operations

Introduction 👨‍💻 It is a voice assistant which can be used to interact with your computer and also you have been seeing it in Iron man movies, but t

Sujith 84 Dec 22, 2022
Sound-Equalizer- This is a Sound Equalizer GUI App Using Python's PyQt5

Sound-Equalizer- This is a Sound Equalizer GUI App Using Python's PyQt5. It gives you the ability to play, pause, and Equalize any one-channel wav audio file and play 3 different instruments.

Mustafa Megahed 1 Jan 10, 2022
Guide & Examples to create deeplearning gstreamer plugins and use them in your pipeline

upai-gst-dl-plugins Guide & Examples to create deeplearning gstreamer plugins and use them in your pipeline Introduction Thanks to the work done by @j

UPAI.IO 11 Dec 11, 2022
Pythonic bindings for FFmpeg's libraries.

PyAV PyAV is a Pythonic binding for the FFmpeg libraries. We aim to provide all of the power and control of the underlying library, but manage the gri

PyAV 1.8k Jan 03, 2023
Audio fingerprinting and recognition in Python

dejavu Audio fingerprinting and recognition algorithm implemented in Python, see the explanation here: How it works Dejavu can memorize audio by liste

Will Drevo 6k Jan 06, 2023
Code for "Audio-driven Talking Face Video Generation with Learning-based Personalized Head Pose"

Audio-driven Talking Face Video Generation with Learning-based Personalized Head Pose We provide PyTorch implementations for our arxiv paper "Audio-dr

Ran Yi 497 Jan 09, 2023
All-In-One Digital Audio Workstation and Plugin Suite

How to install Windows Mac OS X Fedora Ubuntu How to Build Debian and Ubuntu Fedora All Other Linux Distros Mac OS X Windows What is MusiKernel? MusiK

j3ffhubb 111 Sep 21, 2021
Hide Your Secret Message in any Wave Audio File.

HiddenWave Embedding secret messages in wave audio file What is HiddenWave Hiddenwave is a python based program for simple audio steganography. You ca

TechChip 99 Dec 28, 2022
Royal Music You can play music and video at a time in vc

Royals-Music Royal Music You can play music and video at a time in vc Commands SOON String STRING_SESSION Deployment 🎖 Credits • 🇸ᴏᴍʏᴀ⃝🇯ᴇᴇᴛ • 🇴ғғɪ

2 Nov 23, 2021
Mousai is a simple application that can identify song like Shazam

Mousai is a simple application that can identify song like Shazam. It saves the artist, album, and title of the identified song in a JSON file.

Dave Patrick 662 Jan 07, 2023
Music player and music library manager for Linux, Windows, and macOS

Ex Falso / Quod Libet - A Music Library / Editor / Player Quod Libet is a music management program. It provides several different ways to view your au

Quod Libet 1.2k Jan 07, 2023
A library for augmenting annotated audio data

muda A library for Musical Data Augmentation. muda package implements annotation-aware musical data augmentation, as described in the muda paper. The

Brian McFee 214 Nov 22, 2022
F.R.I.D.A.Y. ----- Female Replacement Intelligent Digital Assistant Youth

F.R.I.D.A.Y. Female Replacement Intelligent Digital Assistant Youth--Jarvis-- the virtual assistant made by python Overview This is a virtual assistan

JIB - Just Innovative Bro 4 Feb 26, 2022
Multi-Track Music Generation with the Transfomer and the Johann Sebastian Bach Chorales dataset

MMM: Exploring Conditional Multi-Track Music Generation with the Transformer and the Johann Sebastian Bach Chorales Dataset. Implementation of the pap

102 Dec 08, 2022
Python game programming in Jupyter notebooks.

Jupylet Jupylet is a Python library for programming 2D and 3D games, graphics, music and sound synthesizers, interactively in a Jupyter notebook. It i

Nir Aides 178 Dec 09, 2022
FPGA based USB 2.0 high speed audio interface featuring multiple optical ADAT inputs and outputs

ADAT USB Audio Interface FPGA based USB 2.0 High Speed audio interface featuring multiple optical ADAT inputs and outputs Status / current limitations

Hans Baier 78 Dec 31, 2022
Bot Music Pintar. Created by Rio

🎶 Rio Music 🎶 Kalo Fork Star Ya Bang Hehehe Requirements 📝 FFmpeg NodeJS nodesource.com Python 3.8+ or 3.7 PyTgCalls Generate String Using Replit ⤵

RioProjectX 7 Jun 15, 2022
XA Music Player - Telegram Music Bot

XA Music Player Requirements 📝 FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) MongoDB (3.12.1) 2nd Telegram Ac

RexAshh 3 Jun 30, 2022