The DarkRift2 networking framework written in Python 3

Overview

DarkRiftPy

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in C# using the original Darkrift2 library, and vice versa.

DarkRiftPy is built on top of asyncio, Python's standard asynchronus I/O library, and provides a convenient high-level async/await API.

Installation

$ python3 -m pip install darkriftpy

Quick usage example

A simple exampls contains two separate scripts client.py and server.py for client and server respectively.

After client is connected to the server the latter waits for a darkrift message with tag 1, which contains a list of int32 integers in the payload. Once the message with tag 1 is received, the server starts to randomly select a value from the given list and sends it back to the client.

client.py:

None: try: async with darkriftpy.connect("127.0.0.1", 4296, 4296) as client: items = [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)] writer = darkriftpy.DarkriftWriter() writer.write_int32s(items) await client.send(darkriftpy.DarkriftMessage(1, writer.bytes)) async for message in client: await process_message(message) print("connection has been closed by the server") except ConnectionError: print("failed to connect to the server") if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random


import darkriftpy


RND_POOL = 20

MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


async def process_message(message: darkriftpy.DarkriftMessage) -> None:
    if message.tag != 2:
        raise ValueError("wrong message received")

    num = message.get_reader().read_int32()
    print(f"the server chose the number: {num}")


async def main() -> None:
    try:
        async with darkriftpy.connect("127.0.0.1", 4296, 4296) as client:
            items = [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)]

            writer = darkriftpy.DarkriftWriter()
            writer.write_int32s(items)

            await client.send(darkriftpy.DarkriftMessage(1, writer.bytes))

            async for message in client:
                await process_message(message)

            print("connection has been closed by the server")

    except ConnectionError:
        print("failed to connect to the server")


if __name__ == "__main__":
    asyncio.run(main())

server.py:

None: async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server: await asyncio.Future() if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random


import darkriftpy


async def handle_client(client: darkriftpy.DarkriftClient) -> None:
    message = await client.recv()

    if message.tag != 1:
        raise RuntimeError("wrong client message received")

        client.close()
        await client.wait_closed()
        return

    reader = message.get_reader()
    items = reader.read_int32s()

    while True:
        writer = darkriftpy.DarkriftWriter()
        writer.write_int32(random.choice(items))

        try:
            await client.send(darkriftpy.DarkriftMessage(2, writer.bytes))
        except darkriftpy.ConnectionClosedError:
            print(f"the client({client.connection_id}) has been disconnected")
            await client.wait_closed()
            return

        await asyncio.sleep(1)


async def main() -> None:
    async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server:
        await asyncio.Future()


if __name__ == "__main__":
    asyncio.run(main())

User defined messages

darkriftpy provides a convinient way to create/send/receive user-defined messages. There is a Message class that can be used as a base class for user-defined ones. The Darkrift tag of a user-defined message is defined by passing the keyword tag argument in the class definition:

import darkriftpy

class ChooseMessage(darkriftpy.Message, tag=1):
    ...

For now, the ChooseMessage message contains no payload. Since the ChooseMessage class is implicitly decorated with the @dataclass decorator, the user can define class variables with type annotations which will be automatically deserialized from or serialized to a binary stream using DarkriftReader and DarkriftWriter classes. Only the following native types can be used as a class variable type: str, bytes, bool, float. Since Darkrift2 allows to use types which are not natively available in python, the darkriftpy.types module provides NewType extensions to cover all the required Darkrift2 types.

import darkriftpy
from darkriftpy.types import int32


class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]

As you can see we used the int32 type from the darkriftpy.types module to define 4 byte signed integer. Since the ChooseMessage class is implicitly decorated with the @dataclass decorator and there is no custom constructor, the following constructor will be created automatically: __init__(self, items: lsit[int32])

Therefore, the ChooseMessage class can be instantiated as follows:

import random


import darkriftpy
from darkriftpy.types import int32


MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


message = ChooseMessage([random.randint(MIN_INT32, MAX_INT32) for _ in range(10)])

# message.items contains a list with 10 int32 integers

Since the darkriftpy.Message is inherited from darkriftpy.DarkriftMessage the user-defined message can be passed as is to the send method of the darkriftpy.DarkriftClient object.

To convert a received darkriftpy.DarkriftMessage message to the user-defined one, the user can do the following:

...

client: darkriftpy.DarkriftClient
message: darkriftpy.DarkriftMessage = await client.recv()

try:
    choose_message = ChooseMessage.read(message.get_reader())
except RuntimeError:
    # failed to parse the received message
    ...

print(choose_message.items)

The darkriftpy package provides the MessageContainer class to simplify the message serialization and de-siarilization.

import darkriftpy
from darkriftpy.types import int32


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32

...

client: darkriftpy.DarkriftClient
message: darkriftpy.DarkriftMessage = await client.recv()

try:
    msg = messages.convert(message)
except RuntimeError:
    # failed to convert the received darkrift message
    # to the user-defined one

if isinstance(msg, ChooseMessage):
    print(msg.items)
elif isinstance(msg, ChoiceMessage):
    print(msg.item)

We used the add method of the MessageContainer class as decorator to add the user-defined class into the message container messages.
The convert method of the MessageContainer class allows us to convert a raw darkrift message to the user-defined specific one.

Using all these we can create a client wrapper that will return already deserialized messages.

from collections.abc import AsyncIterator


import darkriftpy


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(self, message: darkriftpy.DarkriftMessage, reliable: bool = True) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()

So now we can use the client wrapper to send and receive user specified messages.

Let's update the first example to use all described features.

client.py:

None: if not isinstance(message, ChoiceMessage): raise ValueError("wrong message received") print(f"the server chose the number: {message.item}") async def main(): try: c: darkriftpy.DarkriftClient async with darkriftpy.connect("127.0.0.1", 4296, 4296) as c: client = Client(c, messages) choose_message = ChooseMessage( [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)] ) await client.send(choose_message) async for message in client: await process_message(message) print("Connection has been closed by the server") except ConnectionError: print("failed to connect to the server") if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random
from collections.abc import AsyncIterator

import darkriftpy
from darkriftpy.types import int32


RND_POOL = 20

MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(
        self, message: darkriftpy.DarkriftMessage, reliable: bool = True
    ) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()


async def process_message(message: darkriftpy.DarkriftMessage) -> None:
    if not isinstance(message, ChoiceMessage):
        raise ValueError("wrong message received")

    print(f"the server chose the number: {message.item}")


async def main():
    try:
        c: darkriftpy.DarkriftClient
        async with darkriftpy.connect("127.0.0.1", 4296, 4296) as c:
            client = Client(c, messages)
            choose_message = ChooseMessage(
                [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)]
            )

            await client.send(choose_message)

            async for message in client:
                await process_message(message)

            print("Connection has been closed by the server")

    except ConnectionError:
        print("failed to connect to the server")


if __name__ == "__main__":
    asyncio.run(main())

server.py:

None: client = Client(c, messages) message = await client.recv() if not isinstance(message, ChooseMessage): raise RuntimeError("wrong client message received") c.close() await c.wait_closed() return while True: choice_message = ChoiceMessage(random.choice(message.items)) try: await client.send(choice_message) except darkriftpy.ConnectionClosedError: print(f"the client({c.connection_id}) has been disconnected") await c.wait_closed() return await asyncio.sleep(1) async def main(): async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server: await asyncio.Future() if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random
from collections.abc import AsyncIterator

import darkriftpy
from darkriftpy.types import int32


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(
        self, message: darkriftpy.DarkriftMessage, reliable: bool = True
    ) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()


async def handle_client(c: darkriftpy.DarkriftClient) -> None:
    client = Client(c, messages)

    message = await client.recv()
    if not isinstance(message, ChooseMessage):
        raise RuntimeError("wrong client message received")

        c.close()
        await c.wait_closed()
        return

    while True:
        choice_message = ChoiceMessage(random.choice(message.items))

        try:
            await client.send(choice_message)
        except darkriftpy.ConnectionClosedError:
            print(f"the client({c.connection_id}) has been disconnected")
            await c.wait_closed()
            return

        await asyncio.sleep(1)


async def main():
    async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server:
        await asyncio.Future()


if __name__ == "__main__":
    asyncio.run(main())

TODO

[ ] - Add multiprocessing support to improve performance and scalability (Fork + Multiplexing I/O).
[ ] - Cover the codebase with tests ;).

Owner
Anton Dobryakov
Anton Dobryakov
Pathfinding visualizer in pygame: A*

Pathfinding Visualizer A* What is this A* algorithm ? Simply put, it is an algorithm that aims to find the shortest possible path between two location

0 Feb 26, 2022
Fedlearn algorithm toolkit for researchers

Fedlearn algorithm toolkit for researchers

89 Nov 14, 2022
Optimal skincare partition finder using graph theory

Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl

Jason Nguyen 1 Nov 22, 2021
Pathfinding algorithm based on A*

Pathfinding V1 What is pathfindingV1 ? This program is my very first path finding program, using python and turtle for graphic rendering. How is it wo

Yan'D 6 May 26, 2022
Algorithms for calibrating power grid distribution system models

Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the

Sandia National Laboratories 2 Oct 31, 2022
Slight modification to one of the Facebook Salina examples, to test the A2C algorithm on financial series.

Facebook Salina - Gym_AnyTrading Slight modification of Facebook Salina Reinforcement Learning - A2C GPU example for financial series. The gym FOREX d

Francesco Bardozzo 5 Mar 14, 2022
implementation of the KNN algorithm on crab biometrics dataset for CS16

crab-knn implementation of the KNN algorithm in Python applied to biometrics data of purple rock crabs (leptograpsus variegatus) to classify the sex o

Andrew W. Chen 1 Nov 18, 2021
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem Abstract The Travelling Salesman Problem is a well known NP-Hard problem. Given

Gary Sun 55 Jun 15, 2022
A simple library for implementing common design patterns.

PyPattyrn from pypattyrn.creational.singleton import Singleton class DummyClass(object, metaclass=Singleton): # DummyClass is now a Singleton!

1.7k Jan 01, 2023
Algorithms written in different programming languages

Data Structures and Algorithms Clean example implementations of data structures and algorithms written in different languages. List of implementations

Zoran Pandovski 1.3k Jan 03, 2023
A command line tool for memorizing algorithms in Python by typing them.

Algo Drills A command line tool for memorizing algorithms in Python by typing them. In alpha and things will change. How it works Type out an algorith

Travis Jungroth 43 Dec 02, 2022
An open source algorithm and dataset for finding poop in pictures.

The shitspotter module is where I will be work on the "shitspotter" poop-detection algorithm and dataset. The primary goal of this work is to allow for the creation of a phone app that finds where yo

Jon Crall 29 Nov 29, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022
All algorithms implemented in Python for education

The Algorithms - Python All algorithms implemented in Python - for education Implementations are for learning purposes only. As they may be less effic

1 Oct 20, 2021
Machine Learning algorithms implementation.

Machine Learning Algorithms Machine Learning algorithms implementation. What can I find here? ML Algorithms KNN K-Means-Clustering SVM (MultiClass) Pe

David Levin 1 Dec 10, 2021
A Python description of the Kinematic Bicycle Model with an animated example.

Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li

Winston H. 36 Dec 23, 2022
A collection of design patterns/idioms in Python

python-patterns A collection of design patterns and idioms in Python. Current Patterns Creational Patterns: Pattern Description abstract_factory use a

Sakis Kasampalis 36.2k Jan 05, 2023
Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program

Planning Algorithms in AI and Robotics course T2 2021-22 The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2,

Mobile Robotics Lab. at Skoltech 6 Sep 21, 2022
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021
Cormen-Lib - An academic tool for data structures and algorithms courses

The Cormen-lib module is an insular data structures and algorithms library based on the Thomas H. Cormen's Introduction to Algorithms Third Edition. This library was made specifically for administeri

Cormen Lib 12 Aug 18, 2022