The DarkRift2 networking framework written in Python 3

Overview

DarkRiftPy

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in C# using the original Darkrift2 library, and vice versa.

DarkRiftPy is built on top of asyncio, Python's standard asynchronus I/O library, and provides a convenient high-level async/await API.

Installation

$ python3 -m pip install darkriftpy

Quick usage example

A simple exampls contains two separate scripts client.py and server.py for client and server respectively.

After client is connected to the server the latter waits for a darkrift message with tag 1, which contains a list of int32 integers in the payload. Once the message with tag 1 is received, the server starts to randomly select a value from the given list and sends it back to the client.

client.py:

None: try: async with darkriftpy.connect("127.0.0.1", 4296, 4296) as client: items = [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)] writer = darkriftpy.DarkriftWriter() writer.write_int32s(items) await client.send(darkriftpy.DarkriftMessage(1, writer.bytes)) async for message in client: await process_message(message) print("connection has been closed by the server") except ConnectionError: print("failed to connect to the server") if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random


import darkriftpy


RND_POOL = 20

MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


async def process_message(message: darkriftpy.DarkriftMessage) -> None:
    if message.tag != 2:
        raise ValueError("wrong message received")

    num = message.get_reader().read_int32()
    print(f"the server chose the number: {num}")


async def main() -> None:
    try:
        async with darkriftpy.connect("127.0.0.1", 4296, 4296) as client:
            items = [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)]

            writer = darkriftpy.DarkriftWriter()
            writer.write_int32s(items)

            await client.send(darkriftpy.DarkriftMessage(1, writer.bytes))

            async for message in client:
                await process_message(message)

            print("connection has been closed by the server")

    except ConnectionError:
        print("failed to connect to the server")


if __name__ == "__main__":
    asyncio.run(main())

server.py:

None: async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server: await asyncio.Future() if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random


import darkriftpy


async def handle_client(client: darkriftpy.DarkriftClient) -> None:
    message = await client.recv()

    if message.tag != 1:
        raise RuntimeError("wrong client message received")

        client.close()
        await client.wait_closed()
        return

    reader = message.get_reader()
    items = reader.read_int32s()

    while True:
        writer = darkriftpy.DarkriftWriter()
        writer.write_int32(random.choice(items))

        try:
            await client.send(darkriftpy.DarkriftMessage(2, writer.bytes))
        except darkriftpy.ConnectionClosedError:
            print(f"the client({client.connection_id}) has been disconnected")
            await client.wait_closed()
            return

        await asyncio.sleep(1)


async def main() -> None:
    async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server:
        await asyncio.Future()


if __name__ == "__main__":
    asyncio.run(main())

User defined messages

darkriftpy provides a convinient way to create/send/receive user-defined messages. There is a Message class that can be used as a base class for user-defined ones. The Darkrift tag of a user-defined message is defined by passing the keyword tag argument in the class definition:

import darkriftpy

class ChooseMessage(darkriftpy.Message, tag=1):
    ...

For now, the ChooseMessage message contains no payload. Since the ChooseMessage class is implicitly decorated with the @dataclass decorator, the user can define class variables with type annotations which will be automatically deserialized from or serialized to a binary stream using DarkriftReader and DarkriftWriter classes. Only the following native types can be used as a class variable type: str, bytes, bool, float. Since Darkrift2 allows to use types which are not natively available in python, the darkriftpy.types module provides NewType extensions to cover all the required Darkrift2 types.

import darkriftpy
from darkriftpy.types import int32


class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]

As you can see we used the int32 type from the darkriftpy.types module to define 4 byte signed integer. Since the ChooseMessage class is implicitly decorated with the @dataclass decorator and there is no custom constructor, the following constructor will be created automatically: __init__(self, items: lsit[int32])

Therefore, the ChooseMessage class can be instantiated as follows:

import random


import darkriftpy
from darkriftpy.types import int32


MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


message = ChooseMessage([random.randint(MIN_INT32, MAX_INT32) for _ in range(10)])

# message.items contains a list with 10 int32 integers

Since the darkriftpy.Message is inherited from darkriftpy.DarkriftMessage the user-defined message can be passed as is to the send method of the darkriftpy.DarkriftClient object.

To convert a received darkriftpy.DarkriftMessage message to the user-defined one, the user can do the following:

...

client: darkriftpy.DarkriftClient
message: darkriftpy.DarkriftMessage = await client.recv()

try:
    choose_message = ChooseMessage.read(message.get_reader())
except RuntimeError:
    # failed to parse the received message
    ...

print(choose_message.items)

The darkriftpy package provides the MessageContainer class to simplify the message serialization and de-siarilization.

import darkriftpy
from darkriftpy.types import int32


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32

...

client: darkriftpy.DarkriftClient
message: darkriftpy.DarkriftMessage = await client.recv()

try:
    msg = messages.convert(message)
except RuntimeError:
    # failed to convert the received darkrift message
    # to the user-defined one

if isinstance(msg, ChooseMessage):
    print(msg.items)
elif isinstance(msg, ChoiceMessage):
    print(msg.item)

We used the add method of the MessageContainer class as decorator to add the user-defined class into the message container messages.
The convert method of the MessageContainer class allows us to convert a raw darkrift message to the user-defined specific one.

Using all these we can create a client wrapper that will return already deserialized messages.

from collections.abc import AsyncIterator


import darkriftpy


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(self, message: darkriftpy.DarkriftMessage, reliable: bool = True) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()

So now we can use the client wrapper to send and receive user specified messages.

Let's update the first example to use all described features.

client.py:

None: if not isinstance(message, ChoiceMessage): raise ValueError("wrong message received") print(f"the server chose the number: {message.item}") async def main(): try: c: darkriftpy.DarkriftClient async with darkriftpy.connect("127.0.0.1", 4296, 4296) as c: client = Client(c, messages) choose_message = ChooseMessage( [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)] ) await client.send(choose_message) async for message in client: await process_message(message) print("Connection has been closed by the server") except ConnectionError: print("failed to connect to the server") if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random
from collections.abc import AsyncIterator

import darkriftpy
from darkriftpy.types import int32


RND_POOL = 20

MIN_INT32 = (2 ** 31) * -1
MAX_INT32 = 2 ** 31 - 1


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(
        self, message: darkriftpy.DarkriftMessage, reliable: bool = True
    ) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()


async def process_message(message: darkriftpy.DarkriftMessage) -> None:
    if not isinstance(message, ChoiceMessage):
        raise ValueError("wrong message received")

    print(f"the server chose the number: {message.item}")


async def main():
    try:
        c: darkriftpy.DarkriftClient
        async with darkriftpy.connect("127.0.0.1", 4296, 4296) as c:
            client = Client(c, messages)
            choose_message = ChooseMessage(
                [random.randint(MIN_INT32, MAX_INT32) for _ in range(RND_POOL)]
            )

            await client.send(choose_message)

            async for message in client:
                await process_message(message)

            print("Connection has been closed by the server")

    except ConnectionError:
        print("failed to connect to the server")


if __name__ == "__main__":
    asyncio.run(main())

server.py:

None: client = Client(c, messages) message = await client.recv() if not isinstance(message, ChooseMessage): raise RuntimeError("wrong client message received") c.close() await c.wait_closed() return while True: choice_message = ChoiceMessage(random.choice(message.items)) try: await client.send(choice_message) except darkriftpy.ConnectionClosedError: print(f"the client({c.connection_id}) has been disconnected") await c.wait_closed() return await asyncio.sleep(1) async def main(): async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server: await asyncio.Future() if __name__ == "__main__": asyncio.run(main()) ">
import asyncio
import random
from collections.abc import AsyncIterator

import darkriftpy
from darkriftpy.types import int32


messages = darkriftpy.MessageContainer()


@messages.add
class ChooseMessage(darkriftpy.Message, tag=1):
    items: list[int32]


@messages.add
class ChoiceMessage(darkriftpy.Message, tag=2):
    item: int32


class Client:
    def __init__(
        self, client: darkriftpy.DarkriftClient, messages: darkriftpy.MessageContainer
    ):
        self._client = client
        self._messages = messages

    async def recv(self) -> darkriftpy.DarkriftMessage:
        message = await self._client.recv()

        try:
            return self._messages.convert(message)
        except RuntimeError:
            # just return the message as is
            pass

        return message

    async def send(
        self, message: darkriftpy.DarkriftMessage, reliable: bool = True
    ) -> None:
        await self._client.send(message, reliable)

    def __aiter__(self) -> AsyncIterator[darkriftpy.DarkriftMessage]:
        return self

    async def __anext__(self) -> darkriftpy.DarkriftMessage:
        """
        Returns the next message.

        Stop iteration when the connection is closed.

        """
        try:
            return await self.recv()
        except darkrift.ConnectionClosedError:
            raise StopAsyncIteration()


async def handle_client(c: darkriftpy.DarkriftClient) -> None:
    client = Client(c, messages)

    message = await client.recv()
    if not isinstance(message, ChooseMessage):
        raise RuntimeError("wrong client message received")

        c.close()
        await c.wait_closed()
        return

    while True:
        choice_message = ChoiceMessage(random.choice(message.items))

        try:
            await client.send(choice_message)
        except darkriftpy.ConnectionClosedError:
            print(f"the client({c.connection_id}) has been disconnected")
            await c.wait_closed()
            return

        await asyncio.sleep(1)


async def main():
    async with darkriftpy.serve(handle_client, "127.0.0.1", 4296, 4296) as server:
        await asyncio.Future()


if __name__ == "__main__":
    asyncio.run(main())

TODO

[ ] - Add multiprocessing support to improve performance and scalability (Fork + Multiplexing I/O).
[ ] - Cover the codebase with tests ;).

Owner
Anton Dobryakov
Anton Dobryakov
A fast, pure python implementation of the MuyGPs Gaussian process realization and training algorithm.

Fast implementation of the MuyGPs Gaussian process hyperparameter estimation algorithm MuyGPs is a GP estimation method that affords fast hyperparamet

Lawrence Livermore National Laboratory 13 Dec 02, 2022
Dynamic Programming-Join Optimization Algorithm

DP-JOA Join optimization is the process of optimizing the joining, or combining, of two or more tables in a database. Here is a simple join optimizati

Haoze Zhou 3 Feb 03, 2022
A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.

TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi

sjas_Phantom 1 Dec 02, 2021
frePPLe - open source supply chain planning

frePPLe Open source supply chain planning FrePPLe is an easy-to-use and easy-to-implement open source advanced planning and scheduling tool for manufa

frePPLe 385 Jan 06, 2023
RRT algorithm and its optimization

RRT-Algorithm-Visualisation This is a project that aims to develop upon the RRT

Sarannya Bhattacharya 7 Mar 06, 2022
Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:

Cutting Stock Problem Cutting Stock Problem (CSP) deals with planning the cutting of items (rods / sheets) from given stock items (which are usually o

Emad Ehsan 87 Dec 31, 2022
Pathfinding visualizer in pygame: A*

Pathfinding Visualizer A* What is this A* algorithm ? Simply put, it is an algorithm that aims to find the shortest possible path between two location

0 Feb 26, 2022
Better control of your asyncio tasks

quattro: task control for asyncio quattro is an Apache 2 licensed library, written in Python, for task control in asyncio applications. quattro is inf

Tin Tvrtković 37 Dec 28, 2022
A custom prime algorithm, implementation, and performance code & review

Colander A custom prime algorithm, implementation, and performance code & review Pseudocode Algorithm 1. given a number of primes to find, the followi

Finn Lancaster 3 Dec 17, 2021
Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm

pyruct Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm The imaging setup is explained in these paper

Berkan Lafci 21 Dec 12, 2022
Infomap is a network clustering algorithm based on the Map equation.

Infomap Infomap is a network clustering algorithm based on the Map equation. For detailed documentation, see mapequation.org/infomap. For a list of re

347 Dec 23, 2022
This is the code repository for 40 Algorithms Every Programmer Should Know , published by Packt.

40 Algorithms Every Programmer Should Know, published by Packt

Packt 721 Jan 02, 2023
Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms

Differential_Privacy_CPS Python implementation of the research paper Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms Re

Shubhesh Anand 2 Dec 14, 2022
Fedlearn algorithm toolkit for researchers

Fedlearn algorithm toolkit for researchers

89 Nov 14, 2022
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
This repository provides some codes to demonstrate several variants of Markov-Chain-Monte-Carlo (MCMC) Algorithms.

Demo-of-MCMC These files are based on the class materials of AEROSP 567 taught by Prof. Alex Gorodetsky at University of Michigan. Author: Hung-Hsiang

Sean 1 Feb 05, 2022
A genetic algorithm written in Python for educational purposes.

Genea: A Genetic Algorithm in Python Genea is a Genetic Algorithm written in Python, for educational purposes. I started writing it for fun, while lea

Dom De Felice 20 Jul 06, 2022
Implementation of core NuPIC algorithms in C++

NuPIC Core This repository contains the C++ source code for the Numenta Platform for Intelligent Computing (NuPIC)

Numenta 270 Nov 19, 2022
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
Algorithms and utilities for SAR sensors

WARNING: THIS CODE IS NOT READY FOR USE Sarsen Algorithms and utilities for SAR sensors Objectives Be faster and simpler than ESA SNAP and cloud nativ

B-Open 201 Dec 27, 2022