The project is an open-source and low-cost kit to get started with underactuated robotics.

Overview

Torque Limited Simple Pendulum

Introduction

The project is an open-source and low-cost kit to get started with underactuated robotics. The kit targets lowering the entry barrier for studying underactuation in real systems which is often overlooked in conventional robotics courses. It implements a torque-limited simple pendulum built using a quasi-direct drive motor which allows for a low friction, torque limited setup. This project describes the offline and online control methods which can be studied using the kit, lists its components, discusses best practices for implementation, presents results from experiments with the simulator and the real system. This repository describes the hardware (CAD, Bill Of Materials (BOM) etc.) required to build the physical system and provides the software (URDF models, simulation and controller) to control it.

See a video the simple pendulum in action:

IMAGE ALT TEXT HERE

Documentation

The hardware setup and the motor configuration are described in their respective readme files. The dynamics of the pendulum are explained here.

In order to work with this repository you can get started here and read the usage instructions here for a description of how to use this repository on a real system. The instructions for testing the code can be found here.

Overview of Methods

Trajectory Optimization tries to find a trajectory of control inputs and states that is feasible for the system while minimizing a cost function. The cost function can for example include terms which drive the system to a desired goal state and penalize the usage of high torques. The following trajectory optimization algorithms are implemented:

Trajectory Following controllers act on a precomputed trajectory and ensure that the system follows the trajectory properly. As the PID and the tvLQR controller react to the actual state of the pendulum they can also be understood as closed loop controllers. The trajectory following controllers implemented in this project are:

Closed Loop or feedback controllers take the state of the system as input and ouput a control signal. Because they are able to react to the current state, they can cope with perturbations during the execution. The following feedback controllers are implemented:

  • Gravity Compensation: A controller compensating the gravitational force acting on the pendulum. The pendulum can be moved as if it was in zero-g.
  • Energy Shaping: A controller regulating the energy of the pendulum. Drives the pendulum towards a desired energy level.
  • Linear Quadratic Regulator (LQR): Linearizes the dynamics around a fixed point and drives the pendulum towards the fixpoint with a quadratic cost function. Only useable in a state space region around the fixpoint.
  • Model predictive control with iLQR: A controller which performs an iLQR optimization at every timestep and executes the first control signal of the computed optimal trajectory.

Reinforcement Learning (RL) can be used to learn a policy on the state space of the robot. The policy, which has to be trained beforehand, receives a state and outputs a control signal like a feedback controller. The simple pendulum is can be formulated as a RL problem with two continuous inputs and one continuous output. Similar to the cost function in trajectory optimization, the policy is trained with a reward function. The controllers acting on the policies are closed loop controllers. The following RL algorithms are implemented:

The implementations of direct collocation and TVLQR make use of drake, iLQR only makes use of the symbolic library of drake, FDDP makes use of Crocoddyl, SAC uses the stable-baselines3 implementation and DDPG is implemented in tensorflow. The other methods use only standard libraries.

The controllers can be benchmarked in simulation with a set of predefined criteria.

Authors

Feel free to contact us if you have questions about the test bench. Enjoy!

Contributing

  1. Fork it (https://github.com/yourname/yourproject/fork)
  2. Create your feature branch (git checkout -b feature/fooBar)
  3. Commit your changes (git commit -am 'Add some fooBar')
  4. Push to the branch (git push origin feature/fooBar)
  5. Create a new Pull Request

See Contributing for more details.

Safety Notes

When working with a real system be careful and mind the following safety measures:

  • Brushless motors can be very powerful, moving with tremendous force and speed. Always limit the range of motion, power, force and speed using configurable parameters, current limited supplies, and mechanical design.

  • Stay away from the plane in which pendulum is swinging. It is recommended to have a safety net surrounding the pendulum in case the pendulum flies away.

  • Make sure you have access to emergency stop while doing experiments. Be extra careful while operating in pure torque control loop.

Acknowledgements

This work has been performed in the VeryHuman project funded by the German Aerospace Center (DLR) with federal funds (Grant Number: FKZ 01IW20004) from the Federal Ministry of Education and Research (BMBF) and is additionally supported with project funds from the federal state of Bremen for setting up the Underactuated Robotics Lab (Grant Number: 201-001-10-3/2021-3-2).

License

This work has been released under the BSD 3-Clause License. Details and terms of use are specified in the LICENSE file within this repository. Note that we do not publish third-party software, hence software packages from other developers are released under their very own terms and conditions, e.g. Stable baselines (MIT License) and Tensorflow (Apache License v2.0). If you install third-party software packages along with this repo ensure that you follow each individual license agreement.


Comments
  • not loading pydrake.symbolic

    not loading pydrake.symbolic

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/software/python/simple_pendulum/trajectory_optimization/ilqr/ilqr.py#L4

    I have installed Drake, and I can import the main module with

    python -c 'import pydrake; print(pydrake.__file__)'
    

    However, when I run the benchmark_controller.py I get

    ModuleNotFoundError: No module named 'pydrake.symbolic'
    

    from the line referenced above. Was this usage deprecated or something?

    If there's an easier way to run some simulation tests, please advise.

    opened by ricopicone 4
  • Is ROS being used in the project?

    Is ROS being used in the project?

    I saw the mention of URDF files but couldnt find a trace of ROS anywhere. If ROS is not used where for example in the project are these URDF files used? I wanted to implment this project but only in simulation. Is this possible without having a physical setup?

    opened by Robotgir 3
  • "J" and "m*cx" are inaccurate in system_identification.py

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/software/python/simple_pendulum/model/system_identification.py#L87-L88

    Hi, J and m*cx may not be accurate in dynamics. It would be better to change to I (Interia) and m respectively.

    opened by Jarvis861 2
  • missing packages encountered when running pytest

    missing packages encountered when running pytest

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/docs/code_testing.md?plain=1#L12

    With a fresh installation, I get

    ModuleNotFoundError: No module named 'eigenpy'
    

    and

    ModuleNotFoundError: No module named 'pydrake'
    

    I didn't install Drake, so the latter may be expected. It looks like EigenPy can't be installed with pip either.

    After installing EigenPy, I'm also getting

    ModuleNotFoundError: No module named 'crocoddyl'
    

    I tried to pip which their site says should work, but no packages were found.

    opened by ricopicone 2
  • setup github actions workflow for continuous integration

    setup github actions workflow for continuous integration

    We should setup a CI/CD pipeline via github so that we can ensure that the software package is always installable on a clean system and the unit testing works.

    You need to include a yml file in order to do this. An example to set this up on github was pointed to me via Alexander Fabisch here: https://github.com/rock-learning/pytransform3d/blob/master/.github/workflows/python-package.yml

    Some further help on this can be found here:

    1. Building and testing with python: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
    2. Supported runners and hardware resources: https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
    3. Getting started with actions: https://docs.github.com/en/actions
    4. Installing dependency software on Ubuntu runners: https://docs.github.com/en/actions/using-github-hosted-runners/customizing-github-hosted-runners#installing-software-on-ubuntu-runners
    opened by shivesh1210 1
  • Title cases in paper.bib

    Title cases in paper.bib

    For your entries in paper.bib, please for this guideline: https://pandoc.org/MANUAL.html#citations.

    In particular, the titles should be capitalized in title case.

    opened by jingnanshi 1
  • paper comments

    paper comments

    Thank you for open sourcing this library. Here are my comments regarding the submitted version of the paper:

    p2: It will be aesthetically more pleasing for the fonts of the variables to be consistent with the equation below. Also mention that the symbols are defined in the equation will be helpful.

    p3: Number the equation and reference it in Figure 1.

    p2: CubeMars_AK_V1.1: is this the actual model number of the controller board? If so, provide the reference to the manual if possible.

    p7: Figure 5: While the criteria have been defined on the previous page, the definitions of how percentages are calculated are not entirely clear. Maybe provide some explanations.

    Let me know if you have more questions. Thank you.

    opened by jingnanshi 1
  • length to CoM 0.045 is wrong

    length to CoM 0.045 is wrong

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/hardware/testbench_description.md?plain=1#L20

    Hi, the length to CoM here is 0.45m instead of 0.045m.

    opened by Jarvis861 1
  • wrong

    wrong "B" matrix in lqr_controller.py

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/software/python/simple_pendulum/controllers/lqr/lqr_controller.py#L39

    Hi, "B" matrix is probably wrong. It should be self.B = np.array([[0, 1/self.m/self.len**2.0]]).T. But this small issue does not affect the final result too much as shown below.

    • True 3 1 lqr_true

    • False 3 2 lqr_false

    Finally, thanks for your sharing! This project does greatly enhance my understanding of control methods.

    opened by Jarvis861 1
  • cannot be run as root

    cannot be run as root

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/docs/installation_guide.md?plain=1#L243

    The script returns an error that it can't be run as root. Remove sudo from this line.

    opened by ricopicone 1
  • encoder

    encoder

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/hardware/testbench_description.md?plain=1#L25

    Include at least a mention that there's an encoder in this for feedback

    opened by ricopicone 1
  • Fixed Control law error in LQRController

    Fixed Control law error in LQRController

    Bugs:

    • The control law used was $u = -K y$, while instead it should've been $u = - K \Delta y$.

    Changes Made:

    • __init__ takes moment_of_inertia as a parameter for added functionality
    • The function set_goal previously had no functionality, now it sets the goal of the controller and recomputes $A$, $K$, and $S$ matrices
    • The control law is changed to $u = -K (y - y_\text{goal})$

    Testing:

    • I tested these changes in our TMotors setup, and they are functional
    opened by Haricharan1212 3
Releases(v1.0.0)
A blender 2.9x addon for managing camera settings

TMG-Camera-Tools A blender 2.9x addon for managing camera settings Tutorial showcasing current features

Mainman002 12 Apr 16, 2022
Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

GB Renewable Forecast Display This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the g

Andy Brace 32 Jul 02, 2022
This allows you to record keyboard and mouse input, and play it back using pynput.

Record and Play with Python! This allows you to record keyboard and mouse input, and play it back (with looping) using pynput. It allows for automatio

George Jensen 45 Jan 02, 2023
A Python program that makes it easy to manage modules on a CircuitPython device!

CircuitPython-Bundle-Manager-v2 A Python program that makes it easy to manage modules on a CircuitPython device! The CircuitPython Bundle Manager v2 i

Ckyiu 1 Dec 18, 2021
Parametric open source reconstructions of Voron printed parts

The Parametric Voron This repository contains Fusion 360 reconstructions of various printed parts from the Voron printers

Matthew Lloyd 26 Dec 19, 2022
It is a program that displays the current temperature of the GPU and CPU in real time and stores the temperature history.

HWLogger It is a program that displays the current temperature of the GPU and CPU in real time and stores the temperature history. Sample Usage Run HW

Xeros 0 Apr 05, 2022
Raspberry Pi Pico Escape Room game.

Pico Escape Room Raspberry Pi Pico Escape Room game. Parts Raspberry Pi Pico Set of 2 x 20-pin Headers for Raspberry Pi Pico 4PCS Breadboards Kit Incl

Kevin Thomas 5 Feb 02, 2022
emhass: Energy Management for Home Assistant

emhass EMHASS: Energy Management for Home Assistant Context This module was conceived as an energy management optimization tool for residential electr

David 70 Dec 24, 2022
A Raspberry Pi Pico plant sensor hub coded in Micropython

plantsensor A Raspberry Pi Pico plant sensor hub coded in Micropython I used: 1x Raspberry Pi Pico - microcontroller 1x Waveshare Pico OLED 1.3 - scre

78 Sep 20, 2022
Robot Framework keyword library wrapper for atlassian-python-api

Robot Framework keyword library wrapper for atlassian-python-api

Marcin Koperski 3 Jul 29, 2022
Code reimplementation of some papers published in SAIL-Lab

SAIL SAIL-Lab统一代码库 Motivation 创建这个项目的动机最早来源于实验室组内成员相互Debug代码的时候遇到的麻烦。

Jianwen Chen 8 Nov 15, 2022
Easyeda2kicad.py - Convert any LCSC components (including EasyEDA) to KiCad library

easyeda2kicad.py A Python script that convert any electronic components from LCSC or EasyEDA to a Kicad library Installation git clone https://github.

uPesy Electronics 150 Jan 06, 2023
Rasberry Pie GPIO memory game. Press the corresponding key to the lit LED.

RPie-keyboard-game Rasberry Pie GPIO memory game. Press the corresponding key to the lit LED. Randem LED (general output) is lit up on rasberrypi rand

Shawn Dowling 1 Oct 24, 2021
Raspberry Pi Pico and LoRaWAN from CircuitPython

Raspberry Pi Pico and LoRaWAN from CircuitPython Enable LoRaWAN communications on your Raspberry Pi Pico or any RP2040-based board using CircuitPython

Alasdair Allan 15 Oct 08, 2022
A simple small scale electric car was build which can be driven by remote control and features a fully autonomous parking procedure.

personal-autonomous-parking-car-raspberry A simple electric car model was build using Raspbery pi. The car has remote control and autonomous operation

Kostas Ziovas 2 Jan 26, 2022
SALUS THERMOSTAT Custom component for Home-Assistant

Home-Assistant Custom Components Custom Components for Home-Assistant (http://www.home-assistant.io) Salus Thermostat Climate Component My device is R

21 Dec 18, 2022
The software that powers the sPot: a 4th generation

This code is meant to accompany this project in which a Spotify client is built into an iPod "Classic" from 2004. Everything is meant to run on a Raspberry Pi Zero W.

Guy Dupont 683 Dec 28, 2022
Designed and coded a password manager in Python with Arduino integration

Designed and coded a password manager in Python with Arduino integration. The Program uses a master user to login, and stores account data such as usernames and passwords to the master user. While lo

Noah Colbourne 1 Jan 16, 2022
Simples Keylogger para Windows com um autoboot implementado no sistema

MKW Keylogger Keylogger simples para Windos com um autoboot implementado no sistema, o malware irá capturar pressionamentos de tecla e armazená-lo em

3 Jul 03, 2021
2021 Real Robot Challenge Phase2 attemp

Real_Robot_Challenge_Phase2_AE_attemp We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge. Please see this pa

Qiang Wang 2 Nov 15, 2021