The project is an open-source and low-cost kit to get started with underactuated robotics.

Overview

Torque Limited Simple Pendulum

Introduction

The project is an open-source and low-cost kit to get started with underactuated robotics. The kit targets lowering the entry barrier for studying underactuation in real systems which is often overlooked in conventional robotics courses. It implements a torque-limited simple pendulum built using a quasi-direct drive motor which allows for a low friction, torque limited setup. This project describes the offline and online control methods which can be studied using the kit, lists its components, discusses best practices for implementation, presents results from experiments with the simulator and the real system. This repository describes the hardware (CAD, Bill Of Materials (BOM) etc.) required to build the physical system and provides the software (URDF models, simulation and controller) to control it.

See a video the simple pendulum in action:

IMAGE ALT TEXT HERE

Documentation

The hardware setup and the motor configuration are described in their respective readme files. The dynamics of the pendulum are explained here.

In order to work with this repository you can get started here and read the usage instructions here for a description of how to use this repository on a real system. The instructions for testing the code can be found here.

Overview of Methods

Trajectory Optimization tries to find a trajectory of control inputs and states that is feasible for the system while minimizing a cost function. The cost function can for example include terms which drive the system to a desired goal state and penalize the usage of high torques. The following trajectory optimization algorithms are implemented:

Trajectory Following controllers act on a precomputed trajectory and ensure that the system follows the trajectory properly. As the PID and the tvLQR controller react to the actual state of the pendulum they can also be understood as closed loop controllers. The trajectory following controllers implemented in this project are:

Closed Loop or feedback controllers take the state of the system as input and ouput a control signal. Because they are able to react to the current state, they can cope with perturbations during the execution. The following feedback controllers are implemented:

  • Gravity Compensation: A controller compensating the gravitational force acting on the pendulum. The pendulum can be moved as if it was in zero-g.
  • Energy Shaping: A controller regulating the energy of the pendulum. Drives the pendulum towards a desired energy level.
  • Linear Quadratic Regulator (LQR): Linearizes the dynamics around a fixed point and drives the pendulum towards the fixpoint with a quadratic cost function. Only useable in a state space region around the fixpoint.
  • Model predictive control with iLQR: A controller which performs an iLQR optimization at every timestep and executes the first control signal of the computed optimal trajectory.

Reinforcement Learning (RL) can be used to learn a policy on the state space of the robot. The policy, which has to be trained beforehand, receives a state and outputs a control signal like a feedback controller. The simple pendulum is can be formulated as a RL problem with two continuous inputs and one continuous output. Similar to the cost function in trajectory optimization, the policy is trained with a reward function. The controllers acting on the policies are closed loop controllers. The following RL algorithms are implemented:

The implementations of direct collocation and TVLQR make use of drake, iLQR only makes use of the symbolic library of drake, FDDP makes use of Crocoddyl, SAC uses the stable-baselines3 implementation and DDPG is implemented in tensorflow. The other methods use only standard libraries.

The controllers can be benchmarked in simulation with a set of predefined criteria.

Authors

Feel free to contact us if you have questions about the test bench. Enjoy!

Contributing

  1. Fork it (https://github.com/yourname/yourproject/fork)
  2. Create your feature branch (git checkout -b feature/fooBar)
  3. Commit your changes (git commit -am 'Add some fooBar')
  4. Push to the branch (git push origin feature/fooBar)
  5. Create a new Pull Request

See Contributing for more details.

Safety Notes

When working with a real system be careful and mind the following safety measures:

  • Brushless motors can be very powerful, moving with tremendous force and speed. Always limit the range of motion, power, force and speed using configurable parameters, current limited supplies, and mechanical design.

  • Stay away from the plane in which pendulum is swinging. It is recommended to have a safety net surrounding the pendulum in case the pendulum flies away.

  • Make sure you have access to emergency stop while doing experiments. Be extra careful while operating in pure torque control loop.

Acknowledgements

This work has been performed in the VeryHuman project funded by the German Aerospace Center (DLR) with federal funds (Grant Number: FKZ 01IW20004) from the Federal Ministry of Education and Research (BMBF) and is additionally supported with project funds from the federal state of Bremen for setting up the Underactuated Robotics Lab (Grant Number: 201-001-10-3/2021-3-2).

License

This work has been released under the BSD 3-Clause License. Details and terms of use are specified in the LICENSE file within this repository. Note that we do not publish third-party software, hence software packages from other developers are released under their very own terms and conditions, e.g. Stable baselines (MIT License) and Tensorflow (Apache License v2.0). If you install third-party software packages along with this repo ensure that you follow each individual license agreement.


Comments
  • not loading pydrake.symbolic

    not loading pydrake.symbolic

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/software/python/simple_pendulum/trajectory_optimization/ilqr/ilqr.py#L4

    I have installed Drake, and I can import the main module with

    python -c 'import pydrake; print(pydrake.__file__)'
    

    However, when I run the benchmark_controller.py I get

    ModuleNotFoundError: No module named 'pydrake.symbolic'
    

    from the line referenced above. Was this usage deprecated or something?

    If there's an easier way to run some simulation tests, please advise.

    opened by ricopicone 4
  • Is ROS being used in the project?

    Is ROS being used in the project?

    I saw the mention of URDF files but couldnt find a trace of ROS anywhere. If ROS is not used where for example in the project are these URDF files used? I wanted to implment this project but only in simulation. Is this possible without having a physical setup?

    opened by Robotgir 3
  • "J" and "m*cx" are inaccurate in system_identification.py

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/software/python/simple_pendulum/model/system_identification.py#L87-L88

    Hi, J and m*cx may not be accurate in dynamics. It would be better to change to I (Interia) and m respectively.

    opened by Jarvis861 2
  • missing packages encountered when running pytest

    missing packages encountered when running pytest

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/docs/code_testing.md?plain=1#L12

    With a fresh installation, I get

    ModuleNotFoundError: No module named 'eigenpy'
    

    and

    ModuleNotFoundError: No module named 'pydrake'
    

    I didn't install Drake, so the latter may be expected. It looks like EigenPy can't be installed with pip either.

    After installing EigenPy, I'm also getting

    ModuleNotFoundError: No module named 'crocoddyl'
    

    I tried to pip which their site says should work, but no packages were found.

    opened by ricopicone 2
  • setup github actions workflow for continuous integration

    setup github actions workflow for continuous integration

    We should setup a CI/CD pipeline via github so that we can ensure that the software package is always installable on a clean system and the unit testing works.

    You need to include a yml file in order to do this. An example to set this up on github was pointed to me via Alexander Fabisch here: https://github.com/rock-learning/pytransform3d/blob/master/.github/workflows/python-package.yml

    Some further help on this can be found here:

    1. Building and testing with python: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
    2. Supported runners and hardware resources: https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
    3. Getting started with actions: https://docs.github.com/en/actions
    4. Installing dependency software on Ubuntu runners: https://docs.github.com/en/actions/using-github-hosted-runners/customizing-github-hosted-runners#installing-software-on-ubuntu-runners
    opened by shivesh1210 1
  • Title cases in paper.bib

    Title cases in paper.bib

    For your entries in paper.bib, please for this guideline: https://pandoc.org/MANUAL.html#citations.

    In particular, the titles should be capitalized in title case.

    opened by jingnanshi 1
  • paper comments

    paper comments

    Thank you for open sourcing this library. Here are my comments regarding the submitted version of the paper:

    p2: It will be aesthetically more pleasing for the fonts of the variables to be consistent with the equation below. Also mention that the symbols are defined in the equation will be helpful.

    p3: Number the equation and reference it in Figure 1.

    p2: CubeMars_AK_V1.1: is this the actual model number of the controller board? If so, provide the reference to the manual if possible.

    p7: Figure 5: While the criteria have been defined on the previous page, the definitions of how percentages are calculated are not entirely clear. Maybe provide some explanations.

    Let me know if you have more questions. Thank you.

    opened by jingnanshi 1
  • length to CoM 0.045 is wrong

    length to CoM 0.045 is wrong

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/hardware/testbench_description.md?plain=1#L20

    Hi, the length to CoM here is 0.45m instead of 0.045m.

    opened by Jarvis861 1
  • wrong

    wrong "B" matrix in lqr_controller.py

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/software/python/simple_pendulum/controllers/lqr/lqr_controller.py#L39

    Hi, "B" matrix is probably wrong. It should be self.B = np.array([[0, 1/self.m/self.len**2.0]]).T. But this small issue does not affect the final result too much as shown below.

    • True 3 1 lqr_true

    • False 3 2 lqr_false

    Finally, thanks for your sharing! This project does greatly enhance my understanding of control methods.

    opened by Jarvis861 1
  • cannot be run as root

    cannot be run as root

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/docs/installation_guide.md?plain=1#L243

    The script returns an error that it can't be run as root. Remove sudo from this line.

    opened by ricopicone 1
  • encoder

    encoder

    https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum/blob/222c610b6ce8e684f7141c1eeddbeb8f85f45b65/hardware/testbench_description.md?plain=1#L25

    Include at least a mention that there's an encoder in this for feedback

    opened by ricopicone 1
  • Fixed Control law error in LQRController

    Fixed Control law error in LQRController

    Bugs:

    • The control law used was $u = -K y$, while instead it should've been $u = - K \Delta y$.

    Changes Made:

    • __init__ takes moment_of_inertia as a parameter for added functionality
    • The function set_goal previously had no functionality, now it sets the goal of the controller and recomputes $A$, $K$, and $S$ matrices
    • The control law is changed to $u = -K (y - y_\text{goal})$

    Testing:

    • I tested these changes in our TMotors setup, and they are functional
    opened by Haricharan1212 3
Releases(v1.0.0)
Simples Keylogger para Windows com um autoboot implementado no sistema

MKW Keylogger Keylogger simples para Windos com um autoboot implementado no sistema, o malware irá capturar pressionamentos de tecla e armazená-lo em

3 Jul 03, 2021
a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico

pico_ws2812b a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico You'll first need to save the ws2812b.py file to your device (for

76 Nov 25, 2022
Self Driving Car Prototype

Package Delivery Rover 🚀 This project is a prototype of Self Driving Car. It's based on embedded systems, to meet the current requirement of delivery

Abhishek Pawar 1 Oct 31, 2021
Example Python code for building RPi-controlled robotic systems

RPi Example Code Example Python code for building RPi-controlled robotic systems These python files have been compiled / developed by the Neurobionics

Elliott Rouse 2 Feb 04, 2022
Raspberry Pi Pico development platform for PlatformIO

Raspberry Pi Pico development platform for PlatformIO A few words in the beginning Before experimental please Reinstall the platform Version: 1.0.0 Th

Georgi Angelov 160 Dec 23, 2022
My 500 LED xmas tree

xmastree2020 This repository contains the code used for Matt's Christmas tree, as featured in "I wired my tree with 500 LED lights and calculated thei

Stand-up Maths 581 Jan 07, 2023
Activate Numpad inside the touchpad with top right corner switch or F8 key

This is a python service which enables switching between numpad and touchpad for the Asus UX433. It may work for other models.

Mohamed Badaoui 230 Jan 08, 2023
Trajectory optimization package for Mini-Pupper robot

Trajectory optimization package for Mini-Pupper robot Purpose of this repository is to provide low-torque and low-impact trajectory for Mini-Pupper qu

Sotaro Katayama 38 Aug 17, 2022
A battery pack simulation tool that uses the PyBaMM framework

Overview of liionpack liionpack takes a 1D PyBaMM model and makes it into a pack. You can either specify the configuration e.g. 16 cells in parallel a

PyBaMM Team 40 Jan 05, 2023
An emulated LED scoreboard for Major League Baseball ⚾

An LED scoreboard for Major League Baseball. Displays a live scoreboard for your team's game on that day.

Tyler Porter 8 Apr 08, 2022
View your medication from Medisafe Cloud in Home Assistant

Medisafe View your medication from Medisafe Cloud in Home Assistant. This integration adds sensors for today's upcoming, taken, skipped, and missed do

Sam Steele 12 Dec 27, 2022
从零开始打造一个智能家居系统

SweetHome 从零开始打造智能家居系统的尝试,主要的实现有 可以扫码添加设备并控制设备的Android App 可以控制亮灭的灯,并可以设置在Android App连接到指定Wifi后自动亮起 可以控制开关的窗帘,机械结构部分自己设计并3D打印出来 树莓派主控,实现Http请求接口和ZigBe

金榜 5 May 01, 2022
FERM: A Framework for Efficient Robotic Manipulation

Framework for Efficient Robotic Manipulation FERM is a framework that enables robots to learn tasks within an hour of real time training.

Ruihan (Philip) Zhao 111 Dec 31, 2022
This repository contains all the code and files needed to simulate the notspot quadrupedal robot using Gazebo and ROS.

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
A simple Python script for toggling Philips Hue Lights by clapping

LightsClap A simple Python script for toggling Philips Hue Lights by clapping Usage pip3 install -r requirements.txt python3 main.py and press the Ent

Flux Industries 2 Nov 16, 2021
ArduinoWaterHeaterIOT - IoT Probe of a solar PV water heating system - Arduino, Python, MQTT, MySQL

ArduinoWaterHeaterIOT IoT Probe of a solar PV water heating system - Arduino, Raspberry Pi, Python, MQTT, MySQL The Arduino sends the AC and DC watts

Jacques Fourie 1 Jan 11, 2022
Examples to accompany the

Examples to accompany the "Raspberry Pi Pico Python SDK" book published by Raspberry Pi Trading, which forms part of the technical documentation in support of Raspberry Pi Pico and the MicroPython po

Raspberry Pi 589 Jan 08, 2023
A module for cross-platform control of the mouse and keyboard in python that is simple to install and use.

PyUserInput PyUserInput is a group project so we've moved the project over to a group organization: https://github.com/PyUserInput/PyUserInput . That

Paul Barton 1k Dec 27, 2022
3d printable macropad

Pico Mpad A 3D printable macropad for automating frequently repeated actions. Hardware To build this project you need access to a 3d printer. The mode

Dmytro Panin 94 Jan 07, 2023
SALUS THERMOSTAT Custom component for Home-Assistant

Home-Assistant Custom Components Custom Components for Home-Assistant (http://www.home-assistant.io) Salus Thermostat Climate Component My device is R

21 Dec 18, 2022