Final-project-robokeeper created by GitHub Classroom

Related tags

HardwareRoboKeeper
Overview

RoboKeeper!

Jonny Bosnich, Joshua Cho, Lio Liang, Marco Morales, Cody Nichoson


Robokeeper being a boss height=

Demonstration Videos

Equipment

Hardware:
  • HDT Global Adroit Manipulator Arm
  • Intel RealSense Camera
Software:
  • Robot Operating System (ROS)
  • MoveIt!
  • OpenCV
  • AprilTag

Quickstart Guide

  1. Install ROS Noetic on Ubuntu 20.04
  2. Create catkin workspace
    $ source /opt/ros/noetic/setup.bash
    $ mkdir -p ~/catkin_ws/src
    $ cd ~/catkin_ws/
    $ catkin_make
    
  3. Copy this repository into src folder
    $ cd ~/catkin_ws/src
    $ git clone [email protected]:ME495-EmbeddedSystems/final-project-robokeeper.git
    
  4. Install required packages and build
    $ source devel/setup.bash
    $ rosdep install --from-paths src --ignore-src -r -y
    $ catkin_make
    

Running the package

  1. First, run the main launchfile. To run the program on the real robot, run the command below.

    roslaunch robokeeper robokeeper_go.launch
    
  2. If using a simulation, add the sim:=true argument when running the main launchfile.

    roslaunch robokeeper robokeeper_go.launch sim:=true
    
  3. The robot now has to pick up the paddle and this is done with two services. First, call above_paddle.

    rosservice call /above_paddle
    
  4. Next, call the 'retrieve_paddle` service.

    rosservice call /retrieve_paddle
    
  5. Call the reset service to move the robot in front of the goal.

    rosservice call /reset
    
  6. Call start_keeping to enable the goal keeping component of the project.

    rosservice call /start_keeping
    
  7. When finished, call the 'stop_keeping' service.

    rosservice call /stop_keeping 
    

Launchfiles

robokeeper_go.launch

This is the main launchfile used to operate robokeeper. It starts by launching robokeeper_moveit.launch which loads the necessary urdf file and hardware configuration, as well as the main MoveIt! executable. It then launches intel_cam.launch which starts the Intel Realsense camera. It also starts a transforms node which handles the calculation of transformation between various frames within the world. Finally, the launchfile starts a motion_control node that publishes appropriate joint state messages to actuate the arm.

robokeeper_moveit.launch

This launchfile loads robot description for the Adroit 6-dof manipulator arm, as well as its hardware and controller configuration from the hdt_6dof_a24_pincer_description package. It also includes move_group.launch from the hdt_6dof_a24_pincer_moveit package, which starts the move group that MoveIt! uses to plan the motion of the arm.

intel_cam.launch

This launchfile starts the Intel Realsense camera by launching rs_camera.launch from the realsense2_camera package. It then launches AprilTag_detection.launch for AprilTag integration.

AprilTag_detection.launch

This launchfile loads parameters necessary for integrating AprilTag detection, which is crucial for detecting the position of the robot relative to the camera. It starts apriltag_ros_continuous_node from the apriltag_ros package.

Nodes

perception

The perception node is responsible for handling the data collected from the Intel RealSense camera utilized to identify and locate the objects that our robot is tasked with blocking. It contains a CV bridge to enable OpenCV integration with ROS, subscribes to the RealSense's camera data, and ultimately publishes 3-dimensional coordinate data of the centroid of the object of interest (a red ball for our purposes).

In order to identify the ball, video frames are iteratively thresholded for a range of HSV values that closely match those of our ball. Once the area of interest is located, a contour is created around its edges and the centroid of the contour located. This centroid can then be treated as the location of the ball in the camera frame and published appropriately.

transforms

Knowing where the ball is relative to the camera is great, but it doesn't help the robot locate the ball. In order to accomplish this, transformations between the camera frame and the robot frame are necessary. This node subscribes to both the ball coordinates from the perception node and AprilTag detections, and publishes the transformed ball coordinates in the robot frame.

In order to complete the relationship between the two frames, an AprilTag with a known transformation between itself and the baselink of the robot (positioned on the floor next to the robot) was used. Using the RealSense, the transformation between the camera frame and the AprilTag can then also be determined. Using these three frames and their relationships, the transformation between coordinates in the camera frame and coordinates in the robot frame can finally be determined.

motion_control

This node provides the core functionality of the robokeeper. Primarily, it subscribes to the topic containing the ball coordinates in the robot frame and contains a number of services utilized to interact with its environment in several ways.

The main service used is /start_keeping. As the name suggests, this service allows the robot to begin interpreting the ball coordinates and attempting to intersect it at the goal line. Appropriate joint trajectory commands are sent to the robot through a mix of MoveIt! and direct joint publishing (depending on the service called) in order to accomplish the task. This node also keeps track of goals scored by determining if the ball has entered the net.

Services

  1. The reset service moves the Adroit arm directly in front of its base and the goal.

    rosservice call /reset
    
  2. The keep service moves the robotic arm to a pose that is only dependent on a y-value. An example of the service being called follows.

    rosservice call /keep "pos: 0.0"
    
  3. above_paddle is a service that moves the arm directly above the paddle holster to get in a position for consistent retrieval.

    rosservice call /above_paddle
    
  4. To retrieve the paddle, the retrieve_paddle can be called. It moves the arm to a postion where it can grip the paddle, it then closes the gripper, and finally moves to the same position as above_paddle.

    rosservice call /retrieve_paddle
    
  5. The start_keeping service enables the robot to block the red ball from entering the goal.

    rosservice call /start_keeping
    
  6. To stop the robot from moving and tracking the ball, call the stop_keeping service.

    rosservice call /stop_keeping 
    

Additional Notes

There are some features within this code that were partially developed, but not completed due to time contraints. Because of this, you may notice certain things in the source code that are not mentioned here.

An example of this is the scoreboard feature. The original plan was to include both a goal counter and block counter when playing with the robot and display these stats to the user in order to create a game. The goal counter was successfully created, but we didn't have time to complete the black counter. The goal counter is located within the 'motion_control' node and the infrastructure for displaying the actual scoreboard using the 'tkinter' library is located in a node called 'scorekeeper'.

Owner
Cody Nichoson
Cody Nichoson
Beam designs for infinite Z 3D printers

A 3D printed beam that is as stiff as steel A while ago Naomi Wu 机械妖姬 very kindly sent us one of Creality's infinite-Z belt printers. Lots of people h

RepRap Ltd 105 Oct 22, 2022
Repo for the esp32s2 version of the Wi-Fi Nugget

Repo for the esp32s2 version of the Wi-Fi Nugget

HakCat 30 Nov 05, 2022
Python module for the qwiic serial control motor driver

Qwiic_SCMD_Py Python module for the qwiic motor driver This python package is a port of the existing SparkFun Serial Controlled Motor Driver Arduino L

SparkFun Electronics 6 Dec 06, 2022
Used python functional programming to make this Ai assistant

Python-based-AI-Assistant I have used python functional programming to make this Ai assistant. Inspiration of project : we have seen in our daily life

Durgesh Kumar 2 Dec 26, 2021
Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino Technical Answers to Real-World Problems Know the plant, Grow the plan

NelakurthiSudheer 3 Jan 03, 2022
Simple Python script to decode and verify an European Health Certificate QR-code

A simple Python script to decode and verify an European Health Certificate QR-code.

Mathias Panzenböck 61 Oct 05, 2022
Python Keylogger for Linux

A keylogger is a program that records your keystrokes, this program saves them in a .txt file on your local computer and, after 30 seconds (or as long as you want), it will close the .txt file and se

Darío Mazzitelli 4 Jul 31, 2021
Automatic CPU speed & power optimizer for Linux

Automatic CPU speed & power optimizer for Linux based on active monitoring of laptop's battery state, CPU usage, CPU temperature and system load. Ultimately allowing you to improve battery life witho

Adnan Hodzic 3.4k Jan 07, 2023
My self-hosting infrastructure, fully automated from empty disk to operating services

Khue's Homelab Current status: ALPHA This project utilizes Infrastructure as Code to automate provisioning, operating, and updating self-hosted servic

Khue Doan 6.4k Dec 31, 2022
Micro Displays for Raspberry Pi

micro-displays Micro Displays for Raspberry Pi Why? I'm super bored in lockdown. Add a Raspberry Pi 400 and a few tiny displays... The top half of the

ig 291 Jul 06, 2022
Rasberry Pie GPIO memory game. Press the corresponding key to the lit LED.

RPie-keyboard-game Rasberry Pie GPIO memory game. Press the corresponding key to the lit LED. Randem LED (general output) is lit up on rasberrypi rand

Shawn Dowling 1 Oct 24, 2021
Connect a TeslaMate instance to Home Assistant, using MQTT

TeslaBuddy Connect a TeslaMate instance to Home Assistant, using MQTT. It allows basic control of your Tesla vehicle via Home Assistant (currently, ju

4 May 23, 2022
A IC scan test interface for Arduino

ICSCAN_ARDUINO Prerequisites Python 3.6 or higher arduino uno or nano what is this It is a bitstream tranceiver to test IC chip It sends bitstream to

Nifty Chips Laboratory 0 Sep 15, 2022
Segger Embedded Studio project for building & debugging Flipper Zero firmware.

Segger Embedded Studio project for Flipper Zero firmware Установка Добавить данный репозиторий в качестве сабмодуля в корень локальной копии репозитор

25 Dec 28, 2022
A set of postprocessing scripts and macro to accelerate the gyroid infill print speed with Klipper

A set of postprocessing scripts and macro to accelerate the gyroid infill print speed with Klipper

Jérôme W. 75 Jan 07, 2023
Turn your Raspberry Pi Pico into a USB Rubber Ducky

pico-ducky Turn your Raspberry Pi Pico into a USB Rubber Ducky Install Requirements CircuitPython for the Raspberry Pi Pico adafruit-circuitpython-bun

Konstantinos 5 Nov 08, 2022
ROS2 nodes for Waveshare Alphabot2-Pi mobile robot.

ROS2 for Waveshare Alphabot2-Pi This repo contains ROS2 packages for the Waveshare Alphabot2-Pi mobile robot: alphabot2: it contains the nodes used to

Michele Rizzo 2 Oct 11, 2022
🔆 A Python module for controlling power and brightness of the official Raspberry Pi 7

rpi-backlight A Python module for controlling power and brightness of the official Raspberry Pi 7" touch display. Note: This GIF was created using the

Linus Groh 238 Jan 08, 2023
A python library written for the raspberry pi.

A python package for using certain components on the raspberry pi.

Builder212 1 Nov 09, 2021
A install script for installing qtile and my configs on Raspberry Pi OS

QPI OS - Qtile + Raspberry PI OS Qtile + Raspberry Pi OS :) Installation Run this command in the terminal

RPICoder 3 Dec 19, 2021