Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Overview

Bailando

Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

[Paper] | [Project Page] | [Video Demo]

Do not hesitate to give a star!

Driving 3D characters to dance following a piece of music is highly challenging due to the spatial constraints applied to poses by choreography norms. In addition, the generated dance sequence also needs to maintain temporal coherency with different music genres. To tackle these challenges, we propose a novel music-to-dance framework, Bailando, with two powerful components: 1) a choreographic memory that learns to summarize meaningful dancing units from 3D pose sequence to a quantized codebook, 2) an actor-critic Generative Pre-trained Transformer (GPT) that composes these units to a fluent dance coherent to the music. With the learned choreographic memory, dance generation is realized on the quantized units that meet high choreography standards, such that the generated dancing sequences are confined within the spatial constraints. To achieve synchronized alignment between diverse motion tempos and music beats, we introduce an actor-critic-based reinforcement learning scheme to the GPT with a newly-designed beat-align reward function. Extensive experiments on the standard benchmark demonstrate that our proposed framework achieves state-of-the-art performance both qualitatively and quantitatively. Notably, the learned choreographic memory is shown to discover human-interpretable dancing-style poses in an unsupervised manner.

Code

Environment

PyTorch == 1.6.0

Data preparation

In our experiments, we use AIST++ for both training and evaluation. Please visit here to download the AIST++ annotations and unzip them as './aist_plusplus_final/' folder, visit here to download all original music pieces (wav) into './aist_plusplus_final/all_musics'. And please set up the AIST++ API from here and download the required SMPL models from here. Please make a folder './smpl' and copy the downloaded 'male' SMPL model (with '_m' in name) to 'smpl/SMPL_MALE.pkl' and finally run

./prepare_aistpp_data.sh

to produce the features for training and test. Otherwise, directly download our preprocessed feature from here as ./data folder if you don't wish to process the data.

Training

The training of Bailando comprises of 4 steps in the following sequence. If you are using the slurm workload manager, you can directly run the corresponding shell. Otherwise, please remove the 'srun' parts. Our models are all trained with single NVIDIA V100 GPU. * A kind reminder: the quantization code does not fit multi-gpu training

Step 1: Train pose VQ-VAE (without global velocity)

sh srun.sh configs/sep_vqvae.yaml train [your node name] 1

Step 2: Train glabal velocity branch of pose VQ-VAE

sh srun.sh configs/sep_vavqe_root.yaml train [your node name] 1

Step 3: Train motion GPT

sh srun_gpt_all.sh configs/cc_motion_gpt.yaml train [your node name] 1

Step 4: Actor-Critic finetuning on target music

sh srun_actor_critic.sh configs/actor_critic.yaml train [your node name] 1

Evaluation

To test with our pretrained models, please download the weights from here (Google Drive) or separately downloads the four weights from [weight 1]|[weight 2]|[weight 3]|[weight4] (坚果云) into ./experiments folder.

1. Generate dancing results

To test the VQ-VAE (with or without global shift as you indicated in config):

sh srun.sh configs/sep_vqvae.yaml eval [your node name] 1

To test GPT:

sh srun_gpt_all.sh configs/cc_motion_gpt.yaml eval [your node name] 1

To test final restuls:

sh srun_actor_critic.sh configs/actor_critic.yaml eval [your node name] 1

2. Dance quality evaluations

After generating the dance in the above step, run the following codes.

Step 1: Extract the (kinetic & manual) features of all AIST++ motions (ONLY do it by once):

python extract_aist_features.py

Step 2: compute the evaluation metrics:

python utils/metrics_new.py

It will show exactly the same values reported in the paper. To fasten the computation, comment Line 184 of utils/metrics_new.py after computed the ground-truth feature once. To test another folder, change Line 182 to your destination, or kindly modify this code to a "non hard version" :)

Choreographic for music in the wild

TODO

Citation

@inproceedings{siyao2022bailando,
    title={Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory,
    author={Siyao, Li and Yu, Weijiang and Gu, Tianpei and Lin, Chunze and Wang, Quan and Qian, Chen and Loy, Chen Change and Liu, Ziwei },
    booktitle={CVPR},
    year={2022}
}

License

Our code is released under MIT License.

Owner
Li Siyao
an interesting PhD student
Li Siyao
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
Image Smoothing and Blurring Using OpenCV

Image-Smoothing-and-Blurring-Using-OpenCV This repository contains codes for performing image smoothing and blurring using OpenCV. There are different

Happy N. Monday 3 Feb 15, 2022
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
Programa que viabiliza a OCR (Optical Character Reading - leitura óptica de caracteres) de um PDF.

Este programa tem o intuito de ser um modificador de arquivos PDF. Os arquivos PDFs podem ser 3: PDFs verdadeiros - em que podem ser selecionados o ti

Daniel Soares Saldanha 2 Oct 11, 2021
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes A PyTorch implement of TextSnake: A Flexible Representation for Detecting

Prince Wang 417 Dec 12, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021
Here use convulation with sobel filter from scratch in opencv python .

Here use convulation with sobel filter from scratch in opencv python .

Tamzid hasan 2 Nov 11, 2021
Pixel art search engine for opengameart

Pixel Art Reverse Image Search for OpenGameArt What does the final search look like? The final search with an example can be found here. It looks like

Eivind Magnus Hvidevold 92 Nov 06, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
轻量级公式 OCR 小工具:一键识别各类公式图片,并转换为 LaTeX 格式

QC-Formula | 青尘公式 OCR 介绍 轻量级开源公式 OCR 小工具:一键识别公式图片,并转换为 LaTeX 格式。 支持从 电脑本地 导入公式图片;(后续版本将支持直接从网页导入图片) 公式图片支持 .png / .jpg / .bmp,大小为 4M 以内均可; 支持印刷体及手写体,前

青尘工作室 26 Jan 07, 2023
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

Ashutosh Mahapatra 2 Feb 06, 2022