Find graph motifs using intuitive notation

Overview

d o t m o t i f

Find graph motifs using intuitive notation

PyPI Codecov


DotMotif is a library that identifies subgraphs or motifs in a large graph. It looks like this:

# Look for all motifs of the form,

# Neuron A excites B:
A -> B [type = "excitatory"]
# ...and B inhibits C:
B -> C [type = "inhibitory"]

Or like this:

TwitterInfluencer(person) {
    # An influencer has more than a million
    # followers and is verified.
    person.followers > 1000000
    person.verified = true
}

InfluencerAwkward(person1, person2) {
    # Two people who are both influencers...
    TwitterInfluencer(person1)
    TwitterInfluencer(person2)
    # ...where one follows the other, but...
    person1 -> person2
    # ...the other doesn't follow back
    person2 !> person1
}

# Search for all awkward twitter influencer
# relationships in the dataset:
InfluencerAwkward(X, Y)

Get Started

To follow along in an interactive Binder without installing anything, launch a Jupyter Notebook here:

Binder

If you have DotMotif, a NetworkX graph, and a curious mind, you already have everything you need to start using DotMotif:

from dotmotif import Motif, GrandIsoExecutor

executor = GrandIsoExecutor(graph=my_networkx_graph)

triangle = Motif("""
A -> B
B -> C
C -> A
""")

results = executor.find(triangle)

Parameters

You can also pass optional parameters into the constructor for the dotmotif object. Those arguments are:

Argument Type, Default Behavior
ignore_direction bool: False Whether to disregard direction when generating the database query
limit int: None A limit (if any) to impose on the query results
enforce_inequality bool: False Whether to enforce inequality; in other words, whether two nodes should be permitted to be aliases for the same node. For example, in A->B->C; if A!=C, then set to True
exclude_automorphisms bool: False Whether to return only a single example for each detected automorphism. See more in the documentation

For more details on how to write a query, see Getting Started.


Citing

If this tool is helpful to your research, please consider citing it with:

# https://doi.org/10.1038/s41598-021-91025-5
@article{Matelsky_Motifs_2021, 
    title={{DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries}},
    volume={11}, 
    ISSN={2045-2322}, 
    url={http://dx.doi.org/10.1038/s41598-021-91025-5}, 
    DOI={10.1038/s41598-021-91025-5}, 
    number={1}, 
    journal={Scientific Reports}, 
    publisher={Springer Science and Business Media LLC}, 
    author={Matelsky, Jordan K. and Reilly, Elizabeth P. and Johnson, Erik C. and Stiso, Jennifer and Bassett, Danielle S. and Wester, Brock A. and Gray-Roncal, William},
    year={2021}, 
    month={Jun}
}
Comments
  • Neuprint Executor - Labeling Edges by ROI

    Neuprint Executor - Labeling Edges by ROI

    Hi Jordan,

    Do you see an easy way to assign ROI labels to edges in the neuprint executor? Let's say I want to query something like this:

    A -> B [weight > 20, ROI == "CX"]
    A -> B [weight > 30, ROI == "CRE(L)"] 
    

    So basically, there are two things here—multigraphs, which you address already in the docs, and encoding edge ROIs. I wonder if that's rather a hard thing to do or not. The data should be there as neuprint-python fetch_synapse_connections returns something like this

        bodyId_pre  bodyId_post roi_pre roi_post  x_pre  y_pre  z_pre  x_post  y_post  z_post  confidence_pre  confidence_post
    0    792368888    754547386  PED(R)   PED(R)  14013  27747  19307   13992   27720   19313           0.996         0.401035
    1    792368888    612742248  PED(R)   PED(R)  14049  27681  19417   14044   27662   19408           0.921         0.881487
    2    792368888   5901225361  PED(R)   PED(R)  14049  27681  19417   14055   27653   19420
    ...
    

    According to this issue it looks like it's possible. My observation is that the physical location of a connection between two neurons is an important feature of a motif. Looking forward to hearing what you say.

    EDIT: Maybe an indirect way to support multiple edges between two nodes is by grouping edge attributes. Does something like this seem plausible. You are doing smth similar in the multigraph docs already: A -> B [synapse_count > 2]. But what exactly is synapse_count?

    A -> B [[weight >= 20, ROI == "CX"], [weight > 30, ROI == "CRE(L)"]]
    

    Best, Jakob

    enhancement cypher Neo4jExecutor NeuPrintExecutor 
    opened by jakobtroidl 9
  • Error on first query

    Error on first query

    Tried to run the query from the tutorial:

    motif = Motif("""
    # My Awesome Motif
    
    Nose_Cell -> Brain_Cell
    Brain_Cell -> Arm_Cell
    """)
    

    But got this error:

    FileNotFoundError                         Traceback (most recent call last)
    <ipython-input-1-3a88159c0a0c> in <module>
    ----> 1 import dotmotif
          2 import networkx
          3 
          4 motif = Motif("""
          5 # My Awesome Motif
    
    ~\anaconda3\lib\site-packages\dotmotif\__init__.py in <module>
         24 from networkx.algorithms import isomorphism
         25 
    ---> 26 from .parsers.v2 import ParserV2
         27 from .validators import DisagreeingEdgesValidator
         28 
    
    ~\anaconda3\lib\site-packages\dotmotif\parsers\v2\__init__.py in <module>
         11 
         12 
    ---> 13 dm_parser = Lark(open(os.path.join(os.path.dirname(__file__), "grammar.lark"), "r"))
         14 
         15 
    
    FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\xxxx\\anaconda3\\lib\\site-packages\\dotmotif\\parsers\\v2\\grammar.lark'
    
    bug parser install 
    opened by lix2k3 9
  • Filtering By Properties w/ Invalid Characters in the Name

    Filtering By Properties w/ Invalid Characters in the Name

    Hey There, I'm using dotmotif to query the neuPrint dataset and have found some of the neurons have properties that aren't accepted in the query string format e.g. 'AVLP(R)': True,

    Is there a way to still query w/ these params? I tried adding directly to the _node_constraints but that doesn't seem to work either e.g.

    motif._node_constraints['A']['AVLP(R)'] = {}
    motif._node_constraints['A']['AVLP(R)']['='] = [True]
    
    Variable `R` not defined (line 2, column 83 (offset: 156))
    "    WHERE B.status = "Traced" AND A.status = "Orphan" AND A.INP = True AND A.AVLP(R) = True"
    
    parser cypher 
    opened by simonwarchol 7
  • fix: weight edge attribute doesn't throw errors anymore (#127)

    fix: weight edge attribute doesn't throw errors anymore (#127)

    The edge attribute in the neuprint executor threw an error with the new JSON feature implementation. I also made the neuprint executor tests more rigorous.

    opened by jakobtroidl 3
  • Upgrade grandiso version to use limits and iterable

    Upgrade grandiso version to use limits and iterable

    In grandiso v1.1.0 and above, there is an optional limit argument to the find_motifs call which short-circuits motif counting if a certain number of valid mappings are found.

    Right now, NetworkX and GrandIso executors implement the dotmotif limit parameter by finding all motifs and then downselecting, which is super inefficient and lame. We could pretty substantially improve performance by supporting the GrandIso limit arg.

    A notable challenge: We perform an additional downselect after running grandiso (to double-check attribute filters). So we may need to store a list of mappings temporarily in order to backfill the results list if candidate mappings are filtered out.

    enhancement GrandIsoExecutor 
    opened by j6k4m8 2
  • Non-string ids not supported by Neo4jExecutor

    Non-string ids not supported by Neo4jExecutor

    Ingesting a NetworkX graph with integer ids results in an error: ValueError: Could not export graph: unsupported operand type(s) for +: 'int' and 'str'. It should be straightforward to handle integers, though A node can be any hashable Python object except None. Maybe just cast with repr.

    question Neo4jExecutor 
    opened by jtpdowns 2
  • Support n constraints on each edge value-operator pair

    Support n constraints on each edge value-operator pair

    Currently, the parser overwrites previous operators if it's redefined:

    A -> B [value<=5, value<=2]
    

    ...will yield a constraint operator of

    { "value": { "lte": 2.0 } }
    

    (i.e. overwriting the first rule).

    bug parser 
    opened by j6k4m8 2
  • Node- and edge-attribute support in DSL

    Node- and edge-attribute support in DSL

    Proposed syntax concepts:

    Nodes

    Inline maplike:

    Node1 { type="GABA", z<12 } -> Node2
    

    Pros:

    • Succinct

    Cons:

    • Possible duplication or conflicting attributes if map is included on multiple lines for the same node

    Postfix where-like:

    Node1 -> Node2 | Node1.type = "GABA", Node1.z < 12
    

    Pros:

    • Succinct

    Cons:

    • Possible duplication or conflicting attributes if attrs are included on multiple lines for the same node

    Footnote constraints

    Node1 -> Node2
    
    Node1.type = "GABA"
    Node1.z < 12
    

    Pros:

    • Reduces possibility of conflicting constraints
    • Clear syntax; can be standalone in its own macro

    Cons:

    • Linecount verbose
    • Decouples attributes from connectivity clauses

    Edges

    Inline maplike:

    A ->{type: "excitatory", neurotransmitter: "ACh"} B
    

    Pros:

    • Inline

    Cons:

    • Reduces clarity of language

    Postfix where-like:

    A -> B | [type: "excitatory", neurotransmitter: "ACh"]
    

    Pros:

    • Inline

    Cons:

    • Reduces clarity of language

    Infix maplike:

    A -[type: "excitatory", neurotransmitter: "ACh"]> B
    

    Pros:

    • Inline

    Cons:

    • Reduces clarity of language
    enhancement DSL 
    opened by j6k4m8 2
  • Add macro edge aliases

    Add macro edge aliases

    This adds support for complex edge constraints in macros:

    decreasing_edge_weights(a, b, c) {
        a -> b as ab
        b -> c as bc
        ab.weight > bc.weight
    }
    
    ...
    

    In increasing levels of challengingness:

    • [x] Add support for simple (edge-value) edge constraints in macros
    • [x] Add support for dynamic (edge-edge) edge constraints in macros
    • [x] Extend support for recursive calls to macros with simple constraints
    • [x] Extend support for recursive calls to macros with dynamic constraints
    • [x] Update documentation

    This fixes #110 and finishes work started in #119.

    enhancement DSL parser 
    opened by j6k4m8 1
  • Add edge aliasing and edge constraints

    Add edge aliasing and edge constraints

    This PR adds support for edge aliases (first described in #110) and comparisons between edge attributes with values and with other edges.

    This enables syntax like this:

    A -> B as ab
    B -> A as ba
    
    ab.weight > ba.weight
    
    • [x] Add support in the DSL
    • [x] Add support in the parser + transformer
    • [x] Add support in the executors:
      • [x] GrandIso
      • [x] NetworkX
      • [x] NeuPrint
      • [x] Neo4j

    I am going to push macro support in a separate PR, since this one is getting pretty lengthy already!

    enhancement DSL parser cypher Neo4jExecutor NetworkXExecutor NeuPrintExecutor GrandIsoExecutor 
    opened by j6k4m8 1
  • Add node attribute bracket syntax

    Add node attribute bracket syntax

    Adds support for "bracket" syntax for node attributes. An attribute like XYZ(ABC) or ABC DEF used to be disallowed because of illegal characters in the attribute name, particularly when using the "dot-attribute" notation:

    # broken:
    A -> B
    A.ABC DEF > 10
    

    The new syntax uses bracket-attribute notation to "escape" these names:

    # working:
    import dotmotif
    from dotmotif.executors.NeuPrintExecutor import NeuPrintExecutor
    
    HOSTNAME = "neuprint.janelia.org"
    DATASET = "hemibrain:v1.2.1"
    TOKEN = "[YOUR TOKEN HERE]"
    
    motif = dotmotif.Motif("""
    A -> B
    A['AVLP(R)'] = True
    """)
    
    E = NeuPrintExecutor(HOSTNAME, DATASET, TOKEN)
    
    E.find(motif, limit=2)
    

    Fixes #111.

    parser cypher Neo4jExecutor NeuPrintExecutor 
    opened by j6k4m8 1
  • Add Impossible Constraints validator

    Add Impossible Constraints validator

    We should be able to automatically catch things like this:

    A.type = 4
    A.type != 4
    

    Right now, we'll catch them in certain instances, but not when constraints are inherited from automorphisms (see #118). Getting smarter about this will likely improve runtime considerably.

    enhancement validator 
    opened by j6k4m8 0
  • Anonymous motif participants

    Anonymous motif participants

    Anonymous motif participants:

    A -> _hidden
    _hidden -> B
    

    Anonymous node participants in macros:

    two_hop(A, B) {
        A -> _i
        _i -> B
    }
    
    two_hop(neuron1, neuron2)
    
    
    
    enhancement DSL parser 
    opened by j6k4m8 0
Releases(v0.13.0)
Anomaly detection on SQL data warehouses and databases

With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300

Cuebook 171 Dec 18, 2022
A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at the browser.

First Redis Python (CRUD) A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at t

Max Base 9 Dec 24, 2022
Application which allows you to make PostgreSQL databases with Python

Automate PostgreSQL Databases with Python Application which allows you to make PostgreSQL databases with Python I used the psycopg2 library which is u

Marc-Alistair Coffi 0 Dec 31, 2021
SpyQL - SQL with Python in the middle

SpyQL SQL with Python in the middle Concept SpyQL is a query language that combines: the simplicity and structure of SQL with the power and readabilit

Daniel Moura 853 Dec 30, 2022
ClickHouse Python Driver with native interface support

ClickHouse Python Driver ClickHouse Python Driver with native (TCP) interface support. Asynchronous wrapper is available here: https://github.com/myma

Marilyn System 957 Dec 30, 2022
Apache Libcloud is a Python library which hides differences between different cloud provider APIs and allows you to manage different cloud resources through a unified and easy to use API

Apache Libcloud - a unified interface for the cloud Apache Libcloud is a Python library which hides differences between different cloud provider APIs

The Apache Software Foundation 1.9k Dec 25, 2022
Python client for Apache Kafka

Kafka Python client Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the offici

Dana Powers 5.1k Jan 08, 2023
Python interface to Oracle Database conforming to the Python DB API 2.0 specification.

cx_Oracle version 8.2 (Development) cx_Oracle is a Python extension module that enables access to Oracle Database. It conforms to the Python database

Oracle 841 Dec 21, 2022
Make Your Company Data Driven. Connect to any data source, easily visualize, dashboard and share your data.

Redash is designed to enable anyone, regardless of the level of technical sophistication, to harness the power of data big and small. SQL users levera

Redash 22.4k Dec 30, 2022
Python DBAPI simplified

Facata A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers. Table of Contents Install

Tony Locke 44 Nov 17, 2021
A selection of SQLite3 databases to practice querying from.

Dummy SQL Databases This is a collection of dummy SQLite3 databases, for learning and practicing SQL querying, generated with the VS Code extension Ge

1 Feb 26, 2022
MongoX is an async python ODM for MongoDB which is built on top Motor and Pydantic.

MongoX MongoX is an async python ODM (Object Document Mapper) for MongoDB which is built on top Motor and Pydantic. The main features include: Fully t

Amin Alaee 112 Dec 04, 2022
Class to connect to XAMPP MySQL Database

MySQL-DB-Connection-Class Class to connect to XAMPP MySQL Database Basta fazer o download o mysql_connect.py e modificar os parâmetros que quiser. E d

Alexandre Pimentel 4 Jul 12, 2021
A pandas-like deferred expression system, with first-class SQL support

Ibis: Python data analysis framework for Hadoop and SQL engines Service Status Documentation Conda packages PyPI Azure Coverage Ibis is a toolbox to b

Ibis Project 2.3k Jan 06, 2023
The JavaScript Database, for Node.js, nw.js, electron and the browser

The JavaScript Database Embedded persistent or in memory database for Node.js, nw.js, Electron and browsers, 100% JavaScript, no binary dependency. AP

Louis Chatriot 13.2k Jan 02, 2023
A HugSQL-inspired database library for Python

PugSQL PugSQL is a simple Python interface for using parameterized SQL, in files. See pugsql.org for the documentation. To install: pip install pugsql

Dan McKinley 558 Dec 24, 2022
A Python wheel containing PostgreSQL

postgresql-wheel A Python wheel for Linux containing a complete, self-contained, locally installable PostgreSQL database server. All servers run as th

Michel Pelletier 71 Nov 09, 2022
Python PostgreSQL database performance insights. Locks, index usage, buffer cache hit ratios, vacuum stats and more.

Python PG Extras Python port of Heroku PG Extras with several additions and improvements. The goal of this project is to provide powerful insights int

Paweł Urbanek 35 Nov 01, 2022
sync/async MongoDB ODM, yes.

μMongo: sync/async ODM μMongo is a Python MongoDB ODM. It inception comes from two needs: the lack of async ODM and the difficulty to do document (un)

Scille 428 Dec 29, 2022
Async database support for Python. 🗄

Databases Databases gives you simple asyncio support for a range of databases. It allows you to make queries using the powerful SQLAlchemy Core expres

Encode 3.2k Dec 30, 2022