This app displays interesting statistical weather records and trends which can be used in climate related research including study of global warming.

Overview

CIRRUS Weather App

Climate Information, Research, and Records of the US

Video Demo: https://www.youtube.com/watch?v=k09VdqbKnMo

Description:

I have developed this app called CIRRUS (Climate Information, Research, and Records of the US). The app displays interesting statistical weather records and trends which can be used in climate related research including study of global warming.

This app was submitted for the 2021 Congressional App Challenge. I just wanted to share in case anyone finds it interesting.

Languages Used:

  • Python (Flask, Beautiful Soup, urllib/requests)
  • SQL
  • HTML
  • CSS
  • JavaScript
  • Jinja2 templating

Additional Tools used and API accesses done:

  • Zip Codes To Go (for collecting all zip codes of the USA)
  • Visual Crossing Weather API (for collecting statistical weather summary data)
  • Google Maps JavaScript API (for rendering the map with the output data)
  • Google Geocoding API (for converting zip code to map location latitude/longitude)

Data Collection:

  1. The program collects all the zip codes for each state (from the website https://www.zipcodestogo.com/) and stores them in a database along with city and state information. Since the data is in html format, Python BeautifulSoup library is used to extract information.

  2. Next the program fetches weather data from https://www.visualcrossing.com/weather-api. This data is collected from 1975 to September 2021 and the data is in CSV format, so Python CSV module is used for processing. [NOTE: A subscription needs to be purchased for this.]

For each zip code, the following monthly summary data is collected: Max Temperature, Min Temperature, Average Temperature, Wind Chill, Heat Index, Precipitation, Snow Depth, Wind Speed, Wind Gust, Visibility, Cloud Cover, and Relative Humidity.

Data collection is a one-time activity and once done, it can be skipped for subsequent runs.

Data Processing and Visualization:

Data is presented on the web page based on user query. There are two query options:

  1. Min-Max records for various weather parameters: The user can select a month from a drop-down menu, enter a year, and click the Get Weather Data button. The program then searches the database, finds locations for parameters such as highest temperature, max rainfall, etc. for that year and month across the entire country, and displays them all in one map. For more information, the user can hover over the marker, which will display a label with the city, state, and zip code of that marker, as well as the parameter and the value.

  2. Historical chart for any specific parameter: For this query option, select a specific parameter, such as "Average Temperature", from the drop-down menu, and click the Get Historical Chart button. We now get the US average temperature chart. Ignoring 2021 (since we don't have data for the entire year), we can see an increasing trend in temperature from 54.8°F in 1975 to 56.6°F in 2020.

File Descriptions:

README.md: The README file.

app.py: The main python file of the application (contains all the functions and Flask routes).

datalib.py: Supplemental data (constants, variables, literals) all in one file.

bs4/: If Beautiful Soup module is not installed, then the package can be downloaded and unarchived in order to use the library.

styles.css: Stylesheet for the HTML files.

chart.html: HTML file for displaying chart results.

index.html: App home page.

layout.html: Common HTML constructs kept in one file to avoid clutter due to repetition and keep all other HTML files clean.

results.html: HTML file for processing and visualization of query results.

weatherdb.sqlite: The database that stores all the database tables. This database is not included (too large to upload).

zipcount.json: Contains the zip code count for each state. Used to determine whether all zip codes for the current state have been collected or not.

Here is the file/directory tree of all files.

CIRRUS:~$tree
├── README.md
├── app.py
├── datalib.py
├── static
│ └── styles.css
├── templates
│ ├── chart.html
│ ├── index.html
│ ├── layout.html
│ └── results.html
├── weatherdb.sqlite
└── zipcount.json

In order to run the program, first export the API keys as below.

For Linux/Mac operating systems:

$ export API_KEY_GEO=
   
    
$ export API_KEY_WEA=
    

    
   

For Windows operating systems:

PS C:\> $Env:API_KEY_GEO = 
   
    
PS C:\> $Env:API_KEY_WEA = 
    

    
   

Also, be sure to have a Maps API key to see the map on the results page. Insert it into the below line of code (in the program, there's already a key there, but that one will not work):

">

Then run flask. Access the website by clicking on the given URL.

In MacOS/Linux:

(Press CTRL+C to quit) * Restarting with stat">
$ flask run
* Serving Flask app "app.py" (lazy loading)
* Environment: development
* Debug mode: off
* Running on 
   
     (Press CTRL+C to quit)
* Restarting with stat

   

In Windows:

PS C:\> flask run
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: off
(date/time) - * Running on 
   
     (Press CTRL+C to quit)

   

Screenshots:

App Homepage:

App Homepage

Get Weather Data Query Results:

Get Weather Data Query Results

Get Historical Chart Query Results (Avg Temperature):

Get Historical Chart Query Results (Avg Temperature)

Get Historical Chart Query Results (Precipitation):

Get Historical Chart Query Results (Precipitation)

NOTES:

  1. Since there are many locations displayed and they can be spread across all over the country, the map is centered at the center of the USA (latitude: 39.50, longitude: -98.35) so all markers can fit on the screen properly.
  2. For displaying the markers, zip codes cannot be used for locations. Therefore, the Google Geocoding API is used to fetch latitude/longitude information for the zip codes.
  3. For a more comprehensive study on global warming, we have to take the entire world’s data into consideration and more precise and extensive data mining is needed. However, even with limited data, we can clearly see the gradient of rise in temperature.
  4. Not just for temperature and global warming, this app can also be used to study all other parameters mentioned earlier such as precipitation, snow depth, etc.
  5. I noticed sometimes the data returned by Visual Crossing website had values that did not seem right. Also, some of the weather parameters for some months may be missing sometimes. So please be aware of this in case some data doesn’t make sense or is missing. However, with a large dataset, any such anomalies average out and do not have much impact on the overall results.
Get Landsat surface reflectance time-series from google earth engine

geextract Google Earth Engine data extraction tool. Quickly obtain Landsat multispectral time-series for exploratory analysis and algorithm testing On

Loïc Dutrieux 50 Dec 15, 2022
A ninja python package that unifies the Google Earth Engine ecosystem.

A Python package that unifies the Google Earth Engine ecosystem. EarthEngine.jl | rgee | rgee+ | eemont GitHub: https://github.com/r-earthengine/ee_ex

47 Dec 27, 2022
A Python framework for building geospatial web-applications

Hey there, this is Greppo... A Python framework for building geospatial web-applications. Greppo is an open-source Python framework that makes it easy

Greppo 304 Dec 27, 2022
Computer Vision in Python

Mahotas Python Computer Vision Library Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy

Luis Pedro Coelho 792 Dec 20, 2022
h3-js provides a JavaScript version of H3, a hexagon-based geospatial indexing system.

h3-js The h3-js library provides a pure-JavaScript version of the H3 Core Library, a hexagon-based geographic grid system. It can be used either in No

Uber Open Source 648 Jan 07, 2023
Geocoding library for Python.

geopy geopy is a Python client for several popular geocoding web services. geopy makes it easy for Python developers to locate the coordinates of addr

geopy 3.8k Dec 30, 2022
Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent.

goes-latlon Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent. 🌎 🛰️ The grid files can be acces

Douglas Uba 3 Apr 06, 2022
iNaturalist observations along hiking trails

This tool reads the route of a hike and generates a table of iNaturalist observations along the trails. It also shows the observations and the route of the hike on a map. Moreover, it saves waypoints

7 Nov 11, 2022
Focal Statistics

Focal-Statistics The Focal statistics tool in many GIS applications like ArcGIS, QGIS and GRASS GIS is a standard method to gain a local overview of r

Ifeanyi Nwasolu 1 Oct 21, 2021
Mmdb-server - An open source fast API server to lookup IP addresses for their geographic location

mmdb-server mmdb-server is an open source fast API server to lookup IP addresses

Alexandre Dulaunoy 67 Nov 25, 2022
A simple python script that, given a location and a date, uses the Nasa Earth API to show a photo taken by the Landsat 8 satellite. The script must be executed on the command-line.

What does it do? Given a location and a date, it uses the Nasa Earth API to show a photo taken by the Landsat 8 satellite. The script must be executed

Caio 42 Nov 26, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

34 Dec 27, 2022
Xarray backend to Copernicus Sentinel-1 satellite data products

xarray-sentinel WARNING: this product is a "technology preview" / pre-Alpha Xarray backend to explore and load Copernicus Sentinel-1 satellite data pr

B-Open 191 Dec 15, 2022
A bot that tweets info and location map for new bicycle parking added to OpenStreetMap within a GeoJSON boundary.

Bike parking tweepy bot app A twitter bot app that searches for bicycle parking added to OpenStreetMap. Relies on AWS Lambda/S3, Python3, Tweepy, Flas

Angelo Trivisonno 1 Dec 19, 2021
Python package for earth-observing satellite data processing

Satpy The Satpy package is a python library for reading and manipulating meteorological remote sensing data and writing it to various image and data f

PyTroll 882 Dec 27, 2022
Google Maps keeps old satellite imagery around for a while – this tool collects what's available for a user-specified region in the form of a GIF.

google-maps-at-88-mph The folks maintaining Google Maps regularly update the satellite imagery it serves its users, but outdated versions of the image

Noah Doersing 111 Sep 27, 2022
Python library to visualize circular plasmid maps

Plasmidviewer Plasmidviewer is a Python library to visualize plasmid maps from GenBank. This library provides only the function to visualize circular

Mori Hideto 9 Dec 04, 2022
Pandas Network Analysis: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:

Pandana Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and sh

Urban Data Science Toolkit 321 Jan 05, 2023
3D extension built off of shapely to make working with geospatial/trajectory data easier in python.

PyGeoShape 3D extension to shapely and pyproj to make working with geospatial/trajectory data easier in python. Getting Started Installation pip The e

Marc Brittain 5 Dec 27, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023