A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

Overview

RE2

This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflow implementation: https://github.com/alibaba-edu/simple-effective-text-matching.

Quick Links

Simple and Effective Text Matching

RE2 is a fast and strong neural architecture for general purpose text matching applications. In a text matching task, a model takes two text sequences as input and predicts their relationship. This method aims to explore what is sufficient for strong performance in these tasks. It simplifies many slow components which are previously considered as core building blocks in text matching, while keeping three key features directly available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features.

RE2 achieves performance on par with the state of the art on four benchmark datasets: SNLI, SciTail, Quora and WikiQA, across tasks of natural language inference, paraphrase identification and answer selection with no or few task-specific adaptations. It has at least 6 times faster inference speed compared to similarly performed models.

The following table lists major experiment results. The paper reports the average and standard deviation of 10 runs. Inference time (in seconds) is measured by processing a batch of 8 pairs of length 20 on Intel i7 CPUs. The computation time of POS features used by CSRAN and DIIN is not included.

Model SNLI SciTail Quora WikiQA Inference Time
BiMPM 86.9 - 88.2 0.731 0.05
ESIM 88.0 70.6 - - -
DIIN 88.0 - 89.1 - 1.79
CSRAN 88.7 86.7 89.2 - 0.28
RE2 88.9±0.1 86.0±0.6 89.2±0.2 0.7618 ±0.0040 0.03~0.05

Refer to the paper for more details of the components and experiment results.

Setup

Data used in the paper are prepared as follows:

SNLI

  • Download and unzip SNLI (pre-processed by Tay et al.) to data/orig.
  • Unzip all zip files in the "data/orig/SNLI" folder. (cd data/orig/SNLI && gunzip *.gz)
  • cd data && python prepare_snli.py

SciTail

  • Download and unzip SciTail dataset to data/orig.
  • cd data && python prepare_scitail.py

Quora

  • Download and unzip Quora dataset (pre-processed by Wang et al.) to data/orig.
  • cd data && python prepare_quora.py

WikiQA

  • Download and unzip WikiQA to data/orig.
  • cd data && python prepare_wikiqa.py
  • Download and unzip evaluation scripts. Use the make -B command to compile the source files in qg-emnlp07-data/eval/trec_eval-8.0. Move the binary file "trec_eval" to resources/.

Usage

To train a new text matching model, run the following command:

python train.py $config_file.json5

Example configuration files are provided in configs/:

  • configs/main.json5: replicate the main experiment result in the paper.
  • configs/robustness.json5: robustness checks
  • configs/ablation.json5: ablation study

The instructions to write your own configuration files:

[
    {
        name: 'exp1', // name of your experiment, can be the same across different data
        __parents__: [
            'default', // always put the default on top
            'data/quora', // data specific configurations in `configs/data`
            // 'debug', // use "debug" to quick debug your code  
        ],
        __repeat__: 5,  // how may repetitions you want
        blocks: 3, // other configurations for this experiment 
    },
    // multiple configurations are executed sequentially
    {
        name: 'exp2', // results under the same name will be overwritten
        __parents__: [
            'default', 
            'data/quora',
        ],
        __repeat__: 5,  
        blocks: 4, 
    }
]

To check the configurations only, use

python train.py $config_file.json5 --dry

To evaluate an existed model, use python evaluate.py $model_path $data_file, here's an example:

python evaluate.py models/snli/benchmark/best.pt data/snli/train.txt 
python evaluate.py models/snli/benchmark/best.pt data/snli/test.txt 

Note that multi-GPU training is not yet supported in the pytorch implementation. A single 16G GPU is sufficient for training when blocks < 5 with hidden size 200 and batch size 512. All the results reported in the paper except the robustness checks can be reproduced with a single 16G GPU.

Citation

Please cite the ACL paper if you use RE2 in your work:

@inproceedings{yang2019simple,
  title={Simple and Effective Text Matching with Richer Alignment Features},
  author={Yang, Runqi and Zhang, Jianhai and Gao, Xing and Ji, Feng and Chen, Haiqing},
  booktitle={Association for Computational Linguistics (ACL)},
  year={2019}
}

License

This project is under Apache License 2.0.

PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Ian Covert 130 Jan 01, 2023
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
5 Jan 05, 2023
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023