A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

Overview

AnnotateChange

Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data in order to construct the Turing Change Point Dataset (TCPD). The TCPD is a dataset of real-world time series used to evaluate change point detection algorithms. For the change point detection benchmark that was created using this dataset, see the Turing Change Point Detection Benchmark repository.

Any work that uses this repository should cite our paper: Van den Burg & Williams - An Evaluation of Change Point Detection Algorithms (2020). You can use the following BibTeX entry:

@article{vandenburg2020evaluation,
        title={An Evaluation of Change Point Detection Algorithms},
        author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
        journal={arXiv preprint arXiv:2003.06222},
        year={2020}
}

Here's a screenshot of what the application looks like during the annotation process:

screenshot of 
AnnotateChange

Some of the features of AnnotateChange include:

  • Admin panel to add/remove datasets, add/remove annotation tasks, add/remove users, and inspect incoming annotations.

  • Basic user management: authentication, email confirmation, forgotten password, automatic log out after inactivity, etc. Users are only allowed to register using an email address from an approved domain.

  • Task assignment of time series to user is done on the fly, ensuring no user ever annotates the same dataset twice, and prioritising datasets that are close to a desired number of annotations.

  • Interactive graph of a time series that supports pan and zoom, support for multidimensional time series.

  • Mandatory "demo" to onboard the user to change point annotation.

  • Backup of annotations to the admin via email.

  • Time series datasets are verified upon upload acccording to a strict schema.

Getting Started

Below are instructions for setting up the application for local development and for running the application with Docker.

Basic

AnnotateChange can be launched quickly for local development as follows:

  1. Clone the repo

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  2. Set up a virtual environment and install dependencies (requires Python 3.7+)

    $ sudo apt-get install -y python3-venv # assuming Ubuntu
    $ pip install wheel
    $ python3 -m venv ./venv
    $ source ./venv/bin/activate
    $ pip install -r requirements.txt
    
  3. Create local development environment file

    $ cp .env.example .env.development
    $ sed -i 's/DB_TYPE=mysql/DB_TYPE=sqlite3/g' .env.development
    

    With DB_TYPE=sqlite3, we don't have to deal with MySQL locally.

  4. Initialize the database (this will be a local app.db file).

    $ ./flask.sh db upgrade
    
  5. Create the admin user account

    $ ./flask.sh admin add --auto-confirm-email
    

    The --auto-confirm-email flag automatically marks the email address of the admin user as confirmed. This is mostly useful in development environments when you don't have a mail address set up yet.

  6. Run the application

    $ ./flask.sh run
    

    This should tell you where its running, probably localhost:5000. You should be able to log in with the admin account you've just created.

  7. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  8. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Docker

To use AnnotateChange locally using Docker, follow the steps below. For a full-fledged installation on a server, see the deployment instructions.

  1. Install docker and docker-compose.

  2. Clone this repository and switch to it:

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  3. Build the docker image:

    $ docker build -t gjjvdburg/annotatechange .
    
  4. Create the directory for persistent MySQL database storage:

    $ mkdir -p persist/{instance,mysql}
    $ sudo chown :1024 persist/instance
    $ chmod 775 persist/instance
    $ chmod g+s persist/instance
    
  5. Copy the environment variables file:

    $ cp .env.example .env
    

    Some environment variables can be adjusted if needed. For example, when moving to production, you'll need to change the FLASK_ENV variable accordingly. Please also make sure to set a proper SECRET_KEY and AC_MYSQL_PASSWORD (= MYSQL_PASSWORD). You'll also need to configure a mail account so the application can send out emails for registration etc. This is what the variables prefixed with MAIL_ are for. The ADMIN_EMAIL is likely your own email, it is used when the app encounters an error and to send backups of the annotation records. You can limit the email domains users can use with the USER_EMAIL_DOMAINS variable. See the config.py file for more info on the configuration options.

  6. Create a local docker network for communiation between the AnnotateChange app and the MySQL server:

    $ docker network create web
    
  7. Launch the services with docker-compose

    $ docker-compose up
    

    You may need to wait 2 minutes here before the database is initialized. If all goes well, you should be able to point your browser to localhost:7831 and see the landing page of the application. Stop the service before continuing to the next step (by pressing Ctrl+C).

  8. Once you have the app running, you'll want to create an admin account so you can upload datasets, manage tasks and users, and download annotation results. This can be done using the following command:

    $ docker-compose run --entrypoint 'flask admin add --auto-confirm-email' annotatechange
    
  9. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  10. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Notes

This codebase is provided "as is". If you find any problems, please raise an issue on GitHub.

The code is licensed under the MIT License.

This code was written by Gertjan van den Burg with helpful comments provided by Chris Williams.

Some implementation details

Below are some thoughts that may help make sense of the codebase.

  • AnnotateChange is a web application build on the Flask framework. See this excellent tutorial for an introduction to Flask. The flask.sh shell script loads the appropriate environment variables and runs the application.

  • The application handles user management and is centered around the idea of a "task" which links a particular user to a particular time series to annotate.

  • An admin role is available, and the admin user can manually assign and delete tasks as well as add/delete users, datasets, etc. The admin user is created using the cli (see the Getting Started documentation above).

  • All datasets must adhere to a specific dataset schema (see utils/dataset_schema.json). See the files in [demo_data] for examples, as well as those in TCPD.

  • Annotations are stored in the database using 0-based indexing. Tasks are assigned on the fly when a user requests a time series to annotate (see utils/tasks.py).

  • Users can only begin annotating when they have successfully passed the introduction.

  • Configuration of the app is done through environment variables, see the .env.example file for an example.

  • Docker is used for deployment (see the deployment documentation in docs), and Traefik is used for SSL, etc.

  • The time series graph is plotted using d3.js.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
Pydocstringformatter - A tool to automatically format Python docstrings that tries to follow recommendations from PEP 8 and PEP 257.

Pydocstringformatter A tool to automatically format Python docstrings that tries to follow recommendations from PEP 8 and PEP 257. See What it does fo

Daniël van Noord 31 Dec 29, 2022
Sphinx theme for readthedocs.org

Read the Docs Sphinx Theme This Sphinx theme was designed to provide a great reader experience for documentation users on both desktop and mobile devi

Read the Docs 4.3k Dec 31, 2022
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
Generate a single PDF file from MkDocs repository.

PDF Generate Plugin for MkDocs This plugin will generate a single PDF file from your MkDocs repository. This plugin is inspired by MkDocs PDF Export P

198 Jan 03, 2023
Project created to help beginner programmers to study, despite the lack of internet!

Project created to help beginner programmers to study, despite the lack of internet!

Dev4Dev 2 Oct 25, 2021
Some code that takes a pipe-separated input and converts that into a table!

tablemaker A program that takes an input: a | b | c # With comments as well. e | f | g h | i |jk And converts it to a table: ┌───┬───┬────┐ │ a │ b │

CodingSoda 2 Aug 30, 2022
Python-samples - This project is to help someone need some practices when learning python language

Python-samples - This project is to help someone need some practices when learning python language

Gui Chen 0 Feb 14, 2022
Data-science-on-gcp - Source code accompanying book: Data Science on the Google Cloud Platform, Valliappa Lakshmanan, O'Reilly 2017

data-science-on-gcp Source code accompanying book: Data Science on the Google Cloud Platform, 2nd Edition Valliappa Lakshmanan O'Reilly, Jan 2022 Bran

Google Cloud Platform 1.2k Dec 28, 2022
Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents.

Iury de oliveira gomes figueiredo 60 Nov 16, 2022
A Json Schema Generator

JSON Schema Generator Author : Eru Michael About A Json Schema Generator. This is a generic program that: Reads a JSON file similar to what's present

1 Nov 10, 2021
The source code that powers readthedocs.org

Welcome to Read the Docs Purpose Read the Docs hosts documentation for the open source community. It supports Sphinx docs written with reStructuredTex

Read the Docs 7.4k Dec 25, 2022
204-python-string-21BCA90 created by GitHub Classroom

204-Python This repository is created for subject "204 Programming Skill" Python Programming. This Repository contain list of programs of python progr

VIDYABHARTI TRUST COLLEGE OF BCA 6 Mar 31, 2022
Template repo to quickly make a tested and documented GitHub action in Python with Poetry

Python + Poetry GitHub Action Template Getting started from the template Rename the src/action_python_poetry package. Globally replace instances of ac

Kevin Duff 89 Dec 25, 2022
Canonical source repository for PyYAML

PyYAML - The next generation YAML parser and emitter for Python. To install, type 'python setup.py install'. By default, the setup.py script checks

The YAML Project 2k Jan 01, 2023
A simple malware that tries to explain the logic of computer viruses with Python.

Simple-Virus-With-Python A simple malware that tries to explain the logic of computer viruses with Python. What Is The Virus ? Computer viruses are ma

Xrypt0 6 Nov 18, 2022
Exercism exercises in Python.

Exercism exercises in Python.

Exercism 1.3k Jan 04, 2023
Course Materials for Math 340

UBC Math 340 Materials This repository aims to be the one repository for which you can find everything you about Math 340. Lecture Notes Lecture Notes

2 Nov 25, 2021
Material for the ros2 crash course

Material for the ros2 crash course

Emmanuel Dean 1 Jan 22, 2022
The OpenAPI Specification Repository

The OpenAPI Specification The OpenAPI Specification is a community-driven open specification within the OpenAPI Initiative, a Linux Foundation Collabo

OpenAPI Initiative 25.5k Dec 29, 2022
100 numpy exercises (with solutions)

100 numpy exercises This is a collection of numpy exercises from numpy mailing list, stack overflow, and numpy documentation. I've also created some p

Nicolas P. Rougier 9.5k Dec 30, 2022